Skip to main content
×
×
Home

Lithography-free variation of the number density of self-catalyzed GaAs nanowires and its impact on polytypism

  • Philipp Schroth (a1) (a2) (a3), Julian Jakob (a2) (a3), Ludwig Feigl (a3), Seyed Mohammad Mostafavi Kashani (a1), Ullrich Pietsch (a1) and Tilo Baumbach (a2) (a3)...
Abstract

We investigate the impact of increasing number density of self-catalyzed GaAs nanowires (NWs) on their crystal structure, grown by molecular beam epitaxy. To this end, we employ an iterative, lithography-free approach for varying the number density of self-catalyzed GaAs NWs grown on Si(111) covered with native oxide. We use scanning electron microscopy and x-ray diffraction in combination with simulations based on the extended Markov model for the morphologic characterization of the so obtained NWs. Our findings show how both the shape of the Ga-droplet and the NW crystal structure are affected even by relatively small changes of the wire number density, allowing for a quantification of its influence on the local NW growth conditions at nominally identical growth parameters.

Copyright
Corresponding author
Address all correspondence to Philipp Schroth at philipp.schroth@kit.edu
References
Hide All
1.Miao, X., Chabak, K., Zhang, C., Mohseni, P.K., Walker, D., and Li, X.: High-speed planar GaAs nanowire arrays with f max > 75 GHz by wafer-scale bottom-up growth. Nano Lett. 15, 27802786 (2015).
2.Dimakis, E., Jahn, U., Ramsteiner, M., Tahraoui, A., Grandal, J., Kong, X., Marquardt, O., Trampert, A., Riechert, H., and Geelhaar, L.: Coaxial multishell (In,Ga)As/GaAs nanowires for near-infrared emission on Si substrates. Nano Lett. 14, 26042609 (2014).
3.Mayer, B., Rudolph, D., Schnell, J., Morkötter, S., Winnerl, J., Treu, J., Müller, K., Bracher, G., Abstreiter, G., Koblmüller, G., and Finley, J.J.: Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature. Nat. Commun. 4, 2931 (2013).
4.Krogstrup, P., Jørgensen, H.I., Heiss, M., Demichel, O., Holm, J.V., Aagesen, M., Nygard, J., and Fontcuberta i Morral, A.: Single nanowire solar cells beyond the Shockley-Queisser limit. Nat. Photonics 7, 306310 (2013).
5.Tomioka, K. and Fukui, T.: Recent progress in integration of III–V nanowire transistors on Si substrate by selective-area growth. J. Phys. D Appl. Phys. 47, 394001 (2014).
6.Fontcuberta i Morral, A., Colombo, C., Abstreiter, G., Arbiol, J., and Morante, J.R.: Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires. Appl. Phys. Lett. 92, 063112 (2008).
7.Colombo, C., Spirkoska, D., Frimmer, M., Abstreiter, G., and Fontcuberta i Morral, A.: Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy. Phys. Rev. B 77, 155326 (2008).
8.Jacobsson, D., Panciera, F., Tersoff, J., Reuter, M.C., Lehmann, S., Hofmann, S., Dick, K.A., and Ross, F.M.: Interface dynamics and crystal phase switching in GaAs nanowires. Nature 531, 317322 (2016).
9.Matteini, F., Dubrovskii, V.G., Rüffer, D., Tütüncüoglu, G., Fontana, Y., and Fontcuberta i Morral, A.: Tailoring the diameter and density of self-catalyzed GaAs nanowires on silicon. Nanotechnology 26, 105603 (2015).
10.Krogstrup, P., Popovitz-Biro, R., Johnson, E., Madsen, M.H., Nygård, J., and Shtrikman, H.: Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111). Nano Lett. 10, 44754482 (2010).
11.Bastiman, F., Küpers, H., Somaschini, C., and Geelhaar, L.: Growth map for Ga-assisted growth of GaAs nanowires on Si(111) substrates by molecular beam epitaxy. Nanotechnology 27, 095601 (2016).
12.Plissard, S., Larrieu, G., Wallart, X., and Caroff, P.: High yield of self-catalyzed GaAs nanowire arrays grown on silicon via gallium droplet positioning. Nanotechnology 22, 275602 (2011).
13.Gibson, S.J. and LaPierre, R.R.: Model of patterned self-assisted nanowire growth. Nanotechnology 25, 415304 (2014).
14.Krogstrup, P., Curiotto, S., Johnson, E., Aagesen, M., Nygård, J., and Chatain, D.: Impact of the liquid phase shape on the structure of III-V nanowires. Phys. Rev. Lett. 106, 125505 (2011).
15.Joyce, H.J., Wong-Leung, J., Gao, Q., Tan, H.H., and Jagadish, C.: Phase perfection in zinc blende and wurtzite III−V nanowires using basic growth parameters. Nano Lett. 10, 908915 (2010).
16.Mårtensson, T., Carlberg, P., Borgström, M., Montelius, L., Seifert, W., and Samuelson, L.: Nanowire arrays defined by nanoimprint lithography. Nano Lett. 4, 699702 (2004).
17.Munshi, A.M., Dheeraj, D.L., Fauske, V.T., Kim, D.C., Huh, J., Reinertsen, J.F., Ahtapodov, L., Lee, K.D., Heidari, B., van Helvoort, A.T.J., Fimland, B.O., and Weman, H.: Vertically aligned GaAs nanowires on graphite and few-layer graphene: generic model and epitaxial growth. Nano Lett. 14, 960966 (2014).
18.Heiß, M., Riedlberger, E., Spirkoska, D., Bichler, M., Abstreiter, G., and Fontcuberta i Morral, A.: Growth mechanisms and optical properties of GaAs-based semiconductor microstructures by selective area epitaxy. J. Cryst. Growth 310, 10491056 (2008).
19.Mosberg, A.B., Myklebost, S., Ren, D., Weman, H., Fimland, B.O., and van Helvoort, A.T.J.: Evaluating focused ion beam patterning for position-controlled nanowire growth using computer vision. J. Phys Conf. Ser. 902, 012020 (2017).
20.Somaschini, C., Bietti, S., Trampert, A., Jahn, U., Hauswald, C., Riechert, H., Sanguinetti, S., and Geelhaar, L.: Control over the number density and diameter of GaAs nanowires on Si(111) mediated by droplet epitaxy. Nano Lett. 13, 36073613 (2013).
21.Tauchnitz, T., Nurmamytov, T., Hübner, R., Engler, M., Facsko, S., Schneider, H., Helm, M., and Dimakis, E.: Decoupling the two roles of Ga droplets in the self-catalyzed growth of GaAs nanowires on SiOx/Si(111) substrates. Cryst. Growth Des. 17, 52765282 (2017).
22.Hakkarainen, T.V., Schramm, A., Mäkelä, J., Laukkanen, P., and Guina, M.: Lithography-free oxide patterns as templates for self-catalyzed growth of highly uniform GaAs nanowires on Si(111). Nanotechnology 26, 275301 (2015).
23.Küpers, H., Bastiman, F., Luna, E., Somaschini, C., and Geelhaar, L.: Ga predeposition for the Ga-assisted growth of GaAs nanowire ensembles with low number density and homogeneous length. J. Cryst. Growth 459, 4349 (2017).
24.Ramdani, M., Harmand, J.-C., Glas, F., Patriarche, G., and Travers, L.: Arsenic pathways in self-catalyzed growth of GaAs nanowires. Cryst. Growth Des. 13, 9196 (2013).
25.Pietsch, U., Holy, V., and Baumbach, T.: High-Resolution X-Ray Scattering from thin films to lateral nanostructures, Springer-Verlag New York, Advanced Texts in Physics, ISBN 0-387-40092-3 (2004).
26.Köhl, M., Schroth, P., Minkevich, A.A., Hornung, J.-W., Dimakis, E., Somaschini, C., Geelhaar, L., Aschenbrenner, T., Lazarev, S., Grigoriev, D., Pietsch, U., and Baumbach, T.: Polytypism in GaAs nanowires: determination of the interplanar spacing of wurtzite GaAs by x-ray diffraction. J. Synchrotron. Radiat. 22, 6775 (2015).
27.Schroth, P., Köhl, M., Hornung, J.-W., Dimakis, E., Somaschini, C., Geelhaar, L., Biermanns, A., Bauer, S., Lazarev, S., Pietsch, U., and Baumbach, T.: Evolution of polytypism in GaAs nanowires during growth revealed by time-resolved in situ x-ray diffraction. Phys. Rev. Lett. 114, 055504 (2015).
28.Köhl, M., Schroth, P., and Baumbach, T.: Perspectives and limitations of symmetric x-ray Bragg reflections for inspecting polytypism in nanowires. J. Synchrotron. Radiat. 23, 487500 (2016).
29.Dheeraj, D.L., Patriarche, G., Zhou, H., Hoang, T.B., Moses, A.F., Grønsberg, S., van Helvoort, A.T.J., Fimland, B.O., and Weman, H.: Growth and characterization of wurtzite GaAs nanowires with defect-free zinc blende GaAsSb inserts. Nano Lett. 8, 44594463 (2008).
30.Jacobsson, D., Yang, F., Hillerich, K., Lenrick, F., Lehmann, S., Kriegner, D., Stangl, J., Wallenberg, L.R., Dick, K.A., and Johansson, J.: Phase transformation in radially merged wurtzite GaAs nanowires. Cryst. Growth Des. 15, 47954803 (2015).
31.Johansson, J., Bolinsson, J., Ek, M., Caroff, P., and Dick, K.A.: Combinatorial approaches to understanding polytypism in III–V nanowires. ACS Nano 6, 61426149 (2012).
32.Tersoff, J.: Stable self-catalyzed growth of III–V nanowires. Nano Lett. 15, 66096613 (2015).
33.Oehler, F., Cattoni, A., Scaccabarozzi, A., Patriarche, G., Glas, F., and Harmand, J.-C.: Measuring and modeling the growth dynamics of self-catalyzed GaP nanowire arrays. Nano Lett. 18, 701708 (2018).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
Type Description Title
WORD
Supplementary materials

Schroth et al. supplementary material
Schroth et al. supplementary material 1

 Word (2.2 MB)
2.2 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed