Skip to main content Accessibility help

A non-noble Cr–Ni-based catalyst for the oxygen reduction reaction in alkaline polymer electrolyte fuel cells

  • P. Faubert (a1), I. Kondov (a2), D. Qazzazie (a3), O. Yurchenko (a4) and C. Müller (a1)...


We report on a new type of polymer electrolyte fuel cell based on a hydroxide ion conductive polymer combined with a non-noble chromium–nickel (Cr–Ni) catalyst for the oxygen reduction reaction (ORR). We study variable fractions of Cr in Ni by density functional theory simulating the thermodynamic potentials characterizing the ORR. We found increased ORR catalytic activity employing the rotating disk electrode technique. The polarization curve and power densities measured for the constructed fuel cell indicate considerable performance improvement with the Cr–Ni catalyst. Thus we expect that this kind of fuel cell may open up alternative routes in fuel cell research using non-noble catalysts.


Corresponding author

Address all correspondence to P. Faubert at


Hide All
1. Jacobson, M.Z., Colella, W.G., and Golden, D.M.: Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science (New York, N.Y.) 308, 19011905 (2005).
2. Steele, B.C. and Heinzel, A.: Materials for fuel-cell technologies. Nature 414, 345352 (2001).
3. Borup, R., Meyers, J., Pivovar, B., Kim, Y.S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K., Zawodzinski, T., Boncella, J., McGrath, J.E., Inaba, M., Miyatake, K., Hori, M., Ota, K., Ogumi, Z., Miyata, S., Nishikata, A., Siroma, Z., Uchimoto, Y., Yasuda, K., Kimijima, K.-I., and Iwashita, N.: Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107, 39043951 (2007).
4. Bashyam, R. and Zelenay, P.: A class of non-precious metal composite catalysts for fuel cells. Nature 443, 6366 (2006).
5. Suo, Y., Zhuang, L., and Lu, J.: First-principles considerations in the design of Pd-alloy catalysts for oxygen reduction. Angew. Chem. (Int. Ed. Engl.) 46, 28622864 (2007).
6. Sahu, A.K., Pitchumani, S., Sridhar, P., and Shukla, A.K.: Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: an overview. Bull. Mater. Sci. 32, 285294 (2009).
7. Satterfield, M.B. and Benziger, J.B.: Non-Fickian water vapor sorption dynamics by nafion membranes. J. Phys. Chem. B 112, 36933704 (2008).
8. Spohr, E.: Molecular dynamics simulations of proton transfer in a model nafion pore. Mol. Simul. 30, 107115 (2004).
9. Fan, X.: Mechanics of moisture for polymers: fundamental concepts and model study. EuroSimE 2008 – International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Micro-Systems, Freiburg im Breisgau, 2008, pp. 1–14. doi: 10.1109/ESIME.2008.4525043.
10. Asazawa, K., Yamada, K., Tanaka, H., Oka, A., Taniguchi, M., and Kobayashi, T.: A platinum-free zero-carbon-emission easy fuelling direct hydrazine fuel cell for vehicles. Angew. Chem. (Int. Ed. Engl.) 46, 80248027 (2007).
11. Hibbs, M.R., Hickner, M.A., Alam, T.M., McIntyre, S.K., Fujimoto, C.H., and Cornelius, C.J.: Transport properties of hydroxide and proton conducting membranes. Chem. Mater. 20, 25662573 (2008).
12. Varcoe, J.R. and Slade, R.C.T.: Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5, 187200 (2005).
13. Agel, E., Bouet, J., and Fauvarque, J.: Characterization and use of anionic membranes for alkaline fuel cells. J. Power Sources 101, 267274 (2001).
14. Yu, E.: Development of direct methanol alkaline fuel cells using anion exchange membranes. J. Power Sources 137, 248256 (2004).
15. Matsuoka, K., Iriyama, Y., Abe, T., Matsuoka, M., and Ogumi, Z.: Alkaline direct alcohol fuel cells using an anion exchange membrane. J. Power Sources 150, 2731 (2005).
16. Yang, D.-S., Bhattacharjya, D., Inamdar, S., Park, J., and Yu, J.-S.: Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. J. Am. Chem. Soc. 134, 1612716130 (2012).
17. Liu, Z.-W., Peng, F., Wang, H.-J., Yu, H., Zheng, W.-X., and Yang, J.: Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angew. Chem. 123, 33153319 (2011).
18. Yang, W., Fellinger, T.-P., and Antonietti, M.: Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. J. Am. Chem. Soc. 133, 206209 (2011).
19. Keith, J.A., Jerkiewicz, G., and Jacob, T.: Theoretical investigations of the oxygen reduction reaction on Pt(111). Chemphyschem – Euro. J. Chem. Phys. Phys. Chem. 11, 27792794 (2010).
20. Nørskov, J.K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J.R., Bligaard, T., and Jónsson, H.: Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 1788617892 (2004).
21. Kondov, I., Faubert, P., and Müller, C.: Activity and electrochemical stability of a chromium modified nickel catalyst for oxygen reduction reaction. Electrochim. Acta 236, 260272 (2017).
22. Anderson, A.B., Jinnouchi, R., and Uddin, J.: Effective reversible potentials and onset potentials for O2 electroreduction on transition metal electrodes. J. Phys. Chem. C 117, 4148 (2013).
23. Kresse, G. and Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 1425114269 (1994).
24. Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 1795317979 (1994).
25. Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 38653868 (1996).
26. Bard, A.J. and Faulkner, L.R. (eds): Electrochemical Methods: Fundamentals and Applications, 2nd ed. (Wiley, New York, 2001).
27. Haji, S.: Analytical modeling of PEM fuel cell i–V curve. Renew. Energy 36, 451458 (2011).
28. Motapon, S.N., Tremblay, O., and Dessaint, L.A.: Development of a generic fuel cell model. IJPELEC 4, 505 (2012).
29. Varcoe, J.R.: Investigations of the ex situ ionic conductivities at 30 degrees C of metal-cation-free quaternary ammonium alkaline anion-exchange membranes in static atmospheres of different relative humidities. Phys. Chem. Chem. Phys. 9, 14791486 (2007).
30. Slade, R. and Varcoe, J.: Investigations of conductivity in FEP-based radiation-grafted alkaline anion-exchange membranes. Solid State Ion. 176, 585597 (2005).
31. Herman, H., Slade, R.C., and Varcoe, J.R.: The radiation-grafting of vinylbenzyl chloride onto poly(hexafluoropropylene-co-tetrafluoroethylene) films with subsequent conversion to alkaline anion-exchange membranes: optimisation of the experimental conditions and characterisation. J. Membr. Sci. 218, 147163 (2003).
32. Danks, T.N., Slade, R.C.T., and Varcoe, J.R.: Alkaline anion-exchange radiation-grafted membranes for possible electrochemical application in fuel cells. J. Mater. Chem. 13, 712721 (2003).
Type Description Title
Supplementary materials

Faubert et al. supplementary material 1
Faubert et al. supplementary material

 Word (368 KB)
368 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed