Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 9
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Takahashi, H. Okazaki, R. Ishiwata, S. Taniguchi, H. Okutani, A. Hagiwara, M. and Terasaki, I. 2016. Colossal Seebeck effect enhanced by quasi-ballistic phonons dragging massive electrons in FeSb2. Nature Communications, Vol. 7, p. 12732.

    Battiato, M. Tomczak, J. M. Zhong, Z. and Held, K. 2015. Unified Picture for the Colossal Thermopower CompoundFeSb2. Physical Review Letters, Vol. 114, Issue. 23,

    Sellitto, A. Cimmelli, V.A. and Jou, D. 2015. Influence of electron and phonon temperature on the efficiency of thermoelectric conversion. International Journal of Heat and Mass Transfer, Vol. 80, p. 344.

    Zhou, Jiawei Liao, Bolin Qiu, Bo Huberman, Samuel Esfarjani, Keivan Dresselhaus, Mildred S. and Chen, Gang 2015. Ab initio optimization of phonon drag effect for lower-temperature thermoelectric energy conversion. Proceedings of the National Academy of Sciences, Vol. 112, Issue. 48, p. 14777.

    Koirala, Machhindra Wang, Hui Pokharel, Mani Lan, Yucheng Guo, Chuanfei Opeil, Cyril and Ren, Zhifeng 2014. Nanostructured YbAgCu4for Potentially Cryogenic Thermoelectric Cooling. Nano Letters, Vol. 14, Issue. 9, p. 5016.

    Liao, Bolin Lee, Sangyeop Esfarjani, Keivan and Chen, Gang 2014. First-principles study of thermal transport inFeSb2. Physical Review B, Vol. 89, Issue. 3,

    Pokharel, M. Zhao, H. Z. Koirala, M. Ren, Z. F. and Opeil, C. 2014. Enhanced Thermoelectric Performance of Te-doped FeSb $$_{2}$$ 2 Nanocomposite. Journal of Low Temperature Physics, Vol. 176, Issue. 1-2, p. 122.

    Fuccillo, M. K. Gibson, Q. D. Ali, Mazhar N. Schoop, L. M. and Cava, R. J. 2013. Correlated evolution of colossal thermoelectric effect and Kondo insulating behavior. APL Materials, Vol. 1, Issue. 6, p. 062102.

    Wang, Yongzheng Fu, Chenguang Zhu, Tiejun Hu, Lipeng Jiang, Guangyu Zhao, Guanghui Huo, Dexuan and Zhao, Xinbing 2013. Hot deformation induced defects and performance enhancement in FeSb2 thermoelectric materials. Journal of Applied Physics, Vol. 114, Issue. 18, p. 184904.


Phonon drag effect in nanocomposite FeSb2

  • Mani Pokharel (a1), Huaizhou Zhao (a1), Kevin Lukas (a1), Zhifeng Ren (a1), Cyril Opeil (a1) and Bogdan Mihaila (a2)
  • DOI:
  • Published online: 07 March 2013

We study the temperature dependence of thermoelectric transport properties of four FeSb2 nanocomposite samples with different grain sizes. The comparison of the single crystals and nanocomposites of varying grain sizes indicates the presence of substantial phonon drag effects in this system contributing to a large Seebeck coefficient at low temperature. As the grain size decreases, the increased phonon scattering at the grain boundaries leads to a suppression of the phonon-drag effect, resulting in a much smaller peak value of the Seebeck coefficient in the nanostructured bulk materials. As a consequence, the ZT values are not improved significantly even though the thermal conductivity is drastically reduced.

Corresponding author
Address all correspondence to Mani Pokharel
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1H. Holseth and A. Kjekshus: Compounds with marcasite type of structure IV. The crystal structure of FeSb2. Acta Chem. Scand. 23, 3043 (1969).

2A.K.L. Fan, G.H. Rosenthal, H.L. McKinzie, and A. Wold: Preparation and properties of FeAs2 and FeSb2. J. Solid State Chem. 5, 136 (1972).

3J. Steger and E. Kostiner: Mossbauer effect study of FeSb2. J. Solid State Chem. 5, 131 (1972).

4C. Petrovic, J.W. Kim, S.L. Bud'ko, A.I. Goldman, and P.C. Canfield: Anisotropy and large magnetoresistance in the narrow-gap semiconductor FeSb2. Phys. Rev. B 67, 155205 (2003).

5A. Bentien, S. Johnsen, G.K.H. Madsen, B.B. Iversen, and F. Steglich: Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2. Euro. Phys. Lett. 80, 17008 (2007).

6H. Zhao, M. Pokharel, G. Zhu, S. Chen, K. Lukas, J. Qing, C. Opeil, G. Chen, and Z. Ren: Dramatic thermal conductivity reduction by nanostructures for large increase in thermoelectric figure-of-merit of FeSb2. Appl. Phys. Lett. 99, 163101 (2011).

7C. Herring: Theory of the thermoelectric power of semiconductors. Phys. Rev. 96, 1163 (1954).

8T.H. Geballe and G.W. Hull: Seebeck effect in silicon. Phys. Rev. 94, 1134 (1954).

9P. Sun, N. Oeschler, S. Johnsen, B.B. Iversen, and F. Steglich: Narrow band gap and enhanced thermoelectricity in FeSb2. Dalton Trans. 39, 1012 (2010).

10P. Sun, N. Oeschler, S. Johnsen, B.B. Iversen, and F. Steglich: FeSb2: prototype of huge electron-diffusion thermoelectricity. Phys. Rev. B 79, 153308 (2009).

11A. Bentien, G.K.H. Madsen, S. Johnsen, and B.B. Iversen: Experimental and theoretical investigations of strongly correlated FeSb2−xSnx. Phys. Rev. B 74, 205105 (2006).

12P. Sun, M. Søndergaard, Y. Sun, S. Johnsen, B.B. Iversen, and F. Steglich: Unchanged thermopower enhancement at the semiconductor-metal transition in correlated FeSb2−xTex. Appl. Phys. Lett. 98, 072105 (2011).

13H. Takahashi, R. Okazaki, Y. Yasui, and I. Terasaki: Low-temperature magnetotransport of narrow-gap semiconductor FeSb2. Phys. Rev. B 84, 205215 (2011).

14J.M. Tomczak, K. Haule, T. Miyake, A. Georges, and G. Kotliar: Thermopower of correlated semiconductors: application to FeAs2 and FeSb2. Phys. Rev. B 82, 085104 (2010).

16Y. Sun, S. Johnsen, P. Eklund, M. Sillassen, J. Bøttiger, N. Oeschler, P. Sun, F. Steglich, and B.B. Iversen: Thermoelectric transport properties of highly oriented FeSb2 thin films. J. Appl. Phys. 106, 033710 (2009).

17L. Weber, M. Lehr, and E. Gmelin: Reduction of the thermopower in semiconducting point contacts. Phys. Rev. B 46, 9511 (1992).

19Q.R. Hou, B.F. Gu, Y.B. Chen, and Y.J. He: Phonon-drag effect of ultra-thin FeSi2 and MnSi1.7/FeSi2 films. Mod. Phys. Lett. B 25, 1829 (2011).

20J.P. Issi and J. Boxus: Phonon-drag low temperature refrigeration. Cryogenics 19, 517 (1979).

21L. Weber and E. Gmelin: Transport properties of silicon. Appl. Phys. A 53, 136 (1991).

22A. Perucchi, L. Degiorgi, R. Hu, C. Petrovic, and V.F. Mitrović: Optical investigation of the metal-insulator transition in FeSb2. Eur. Phys. J., B 54, 175 (2006).

23N. Lazarević, Z.V. Popović, R. Hu, and C. Petrovic: Evidence for electron-phonon interaction in Fe1−xMxSb2 (M = Co and Cr; 0 ≤ x ≤ 0.5) single crystals. Phys. Rev. B 81, 144302 (2010).

25J. Tang, W. Wang, G.L. Zhao, and Q. Li: Colossal positive Seebeck coefficient and low thermal conductivity in reduced TiO2. J. Phys. Condens. Matter 21, 205703 (2009).

26C. Petrovic, Y. Lee, T. Vogt, Dj.N. Lazarov, S.L. Bud'ko, and J. Canfield: Kondo insulator description of spin state transition in FeSb2. Phys. Rev. B 72, 045103 (2005).

27J. Ziman: Electrons and Phonons (Oxford University Press, Oxford, UK, 2001).

28W.R. Thurber and A.J.H. Mante: Thermal conductivity and thermoelectric power of rutile (TiO2). Phys. Rev. 139, A1655 (1965).

30H.J. Goldsmid: Introduction to Thermoelectricity: Springer Series in Material Science (Springer-Verlag, Berlin, Germany, 2010).

32A.D. Becke: A new mixing of Hartree–Fock and local density – functional theories. J. Chem. Phys. 98, 1372 (1993).

33L. Hedin: New method for calculating the one-particle Green's function with application to the electron-gas problem. Phys. Rev. 139, A796 (1965).

34H.P.R. Frederikse and E.V. Mielczarek: Thermoelectric power of indium antimonide. Phys. Rev. 99, 1889 (1955).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Communications
  • ISSN: 2159-6859
  • EISSN: 2159-6867
  • URL: /core/journals/mrs-communications
Please enter your name
Please enter a valid email address
Who would you like to send this to? *