Skip to main content Accessibility help
×
Home

Recent developments in ductile bulk metallic glass composites

  • M. Ferry (a1), K.J. Laws (a1), C. White (a1), D.M. Miskovic (a1), K.F. Shamlaye (a1), W. Xu (a1) and O. Biletska (a1)...

Abstract

Offering a unique suite of mechanical, physical, and chemical properties, bulk metallic glasses (BMGs) show significant promise as engineering materials. Unfortunately, most BMGs exhibit low tensile ductility at ambient temperature that limits their use as structural (load-bearing) materials. To overcome this problem, BMG composites (BMGCs) containing a second phase are being developed for improving ductility by controlling the mechanics of shear band nucleation and growth in the glassy matrix, which is the primary mode of failure in these materials. This review describes some recent developments in BMGCs and discusses the influence of the type of second phase on mechanical behavior.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Recent developments in ductile bulk metallic glass composites
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Recent developments in ductile bulk metallic glass composites
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Recent developments in ductile bulk metallic glass composites
      Available formats
      ×

Copyright

Corresponding author

Address all correspondence to M. Ferry at m.ferry@unsw.edu.au

References

Hide All
1.Trexler, M.M. and Thadhani, N.N.: Mechanical properties of bulk metallic glasses. Prog. Mater. Sci. 55, 759 (2010).
2.Inoue, A. and Takeuchi, A.: Recent development and application products of bulk glassy alloys. Acta Mater. 59, 2243 (2011).
3.Wang, W.H., Dong, C., and Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng. R 44, 45 (2004).
4.Ashby, M.F. and Greer, A.L.: Metallic glasses as structural materials. Scripta Mater. 54, 321 (2006).
5.Greer, A.L.: Metallic glasses…on the threshold. Mater. Today 12, 14 (2009).
6.Schroers, J.: Processing of bulk metallic glass. Adv. Mater. 21, 1 (2009).
7.Lewandowski, J.J., Wang, W.H., and Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).
8.Schroers, J. and Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).
9.Demetriou, M.D., Launey, M.E., Garrett, G., Schramm, J.P., Hofmann, D.C., Johnson, W.L., and Ritchie, R.O.: A damage-tolerant glass. Nature Mater. 10, 123 (2011).
10.Bian, Z., Kato, H., Qin, C.L., Zhang, W., and Inoue, A.: Cu-Hf-Ti-Ag-Ta bulk metallic glass composites and their properties. Acta Mater. 53, 2037 (2005).
11.Lee, M.L., Li, Y., and Schuh, C.A.: Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites. Acta Mater. 52, 4121 (2004).
12.Xing, L.Q., Eckert, J., Loser, W., and Schultz, L.: High-strength materials produced by precipitation of icosahedral quasicrystals in bulk Zr-Ti-Cu-Ni-Al amorphous alloys. Appl. Phys. Lett. 74, 664 (1999).
13.Hofmann, D.C., Wiest, J.-Y.S. A., Duan, G., Lind, M-L., Demetriou, M.D., and Johnson, W.L.: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008).
14.Choi-Yim, H., Conner, R.D., Szuecs, F., and Johnson, W.L.: Processing, microstructure and properties of ductile metal particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 50, 2737 (2002).
15.Hajlaoui, K., Yavari, A.R., LeMoulec, A., Botta, W.J., Vaughan, F.G., Das, A.L.G.J., and Kvick, A.: Plasticity induced by nanoparticle dispersions in bulk metallic glasses. J. Non-Crystal. Solids 353, 327 (2007).
16.Inoue, A., Zhang, W., Tsurui, T., Yavari, A.R., and Greer, A.L.: Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass. Philos. Mag. Lett. 85, 221 (2005).
17.Hays, C.C., Kim, C.P., and Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).
18.Conner, R.D., Dandliker, R.B., and Johnson, W.L.: Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Mater. 46, 6089 (1998).
19.Choi-Yim, H., Lee, S.-Y., and Conner, R.D.: Mechanical behavior of Mo and Ta wire-reinforced bulk metallic glass composites. Scripta Mater. 58, 763 (2008).
20.Szuecs, F., Kim, C.P., and Johnson, W.L.: Mechanical properties of Zr56.2Ti13.8Nb5.0Cu 6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Mater. 49, 1507 (2001).
21.Flores, K.M., Johnson, W.L., and Dauskardt, R.H.: Fracture and fatigue behavior of a Zr-Ti-Nb ductile phase reinforced bulk metallic glass matrix composite. Scripta Mater. 49, 1181 (2003).
22.Eckert, J., Das, J., Pauly, S., and Duhamel, C.: Mechanical properties of bulk metallic glasses and composites. J. Mater. Res. 22, 285 (2007).
23.Inoue, A.: Mechanical properties of Zr-based bulk glassy alloys containing nanoscale compound particles. Intermetallics 8, 455 (2000).
24.Inoue, A., Shen, B.L., Koshiba, H., Kato, H., and Yavari, A.R.: Ultra-high strength above 5000 MPa and soft magnetic properties of Co-Fe-Ta-B bulk glassy alloys. Acta Mater. 52, 1631 (2004).
25.Conner, R.D., Johnson, W.L., Paton, N.E., and Nix, W.D.: Shear bands and cracking of metallic glass plates in bending. J. Appl. Phys. 94, 904 (2003).
26.Dai, L.H. and Bai, Y.L.: Basic mechanical behaviors and mechanics of shear banding in BMGs. Int. J. Impact Eng. 35, 704 (2008).
27.Hays, C.C., Kim, C.P., and Johnson, W.L.: Improved mechanical behavior of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Mater. Sci. Eng. A 304, 650 (2001).
28.Eckert, J., Das, J., Pauly, S., and Duhamel, C.: Processing routes, microstructure and mechanical properties of metallic glasses and their composites. Adv. Eng. Mater. 9, 443 (2007).
29.Clyne, T.W. and Withers, P.J.: An Introduction to Metal Matrix Composites (Cambridge University Press, Cambridge, UK, 1995).
30.Choi-Yim, H., Conner, R.D., and Johnson, W.L.: Microstructures and properties of metal reinforced bulk metallic glass composites. Mater. Sci. Forum 360–362, 55 (2001).
31.Kinaka, M., Kato, H., Hasegawa, M., and Inoue, A.: High specific strength Mg-based bulk metallic glass matrix composite highly ductilized by Ti dispersoid. Mater. Sci. Eng A 494, 299 (2008).
32.Zhu, Z., Zhang, H., Hu, Z., Zhang, W., and Inoue, A.: Ta-particulate reinforced Zr-based bulk metallic glass matrix composite with tensile plasticity. Scripta Mater. 62, 278 (2010).
33.Eckert, J., Seidel, M., Kubler, A., Klement, U., and Schultz, L.: Oxide dispersion strengthened mechanically alloyed amorphous Zr-Al-Cu-Ni composites. Scripta Mater. 38, 595 (1998).
34.Fu, H.M., Zhang, H.F., Wang, H., Zhang, Q.S., and Hu, Z.Q.: Synthesis and mechanical properties of Cu-based bulk metallic glass composites containing in situ TiC particles. Scripta Mater. 52, 669 (2005).
35.Lim, H.K., Park, E.S., Park, J.S., Kim, W.T., and Kim, D.H.: Shear band formation and mechanical properties of cold-rolled bulk metallic glass and metallic glass matrix composite. J. Mater. Sci. 40, 6127 (2005).
36.Dandliker, R.D., Conner, R.D., and Johnson, W.L.: Melt infiltration casting of bulk metallic-glass matrix composites. J. Mater. Res. 13, 10 (1998).
37.Kim, C.P., Bush, R., Masuhr, A., Choi-Yim, H., and Johnson, W.L.: Processing of carbon-fiber-reinforced Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass composites. Apply. Phys. Lett. 79, 1456 (1997).
38.Siegrist, M.E. and Löffler, J.F.: Bulk metallic glass-graphite composites. Scripta Mater. 56, 1079 (2007).
39.Choi-Yim, H., Busch, R., Köster, U., and Johnson, W.L.: Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 47, 2455 (1999).
40.Schroers, J., Nguyen, T., and Croopnick, G.A.: A novel metallic glass composite synthesis method. Scripta Mater. 56, 177 (2007).
41.Fan, J.T., Zhang, Z.F., Mao, S.X., Shen, B.L., and Inoue, A.: Deformation and fracture behaviors of Co-based metallic glass and its composite with dendrites. Intermetallics 17, 445 (2009).
42.Das, J., Loser, W., Kuhn, U., Eckert, J., Roy, S.K., and Schultz, L.: High-strength Zr-Nb-(Cu,Ni,Al) composites with enhanced plasticity. Apply. Phys. Lett. 82, 4690 (2003).
43.Choi-Yim, H., Conner, R.D., and Johnson, W.L.: In situ composite formation in the Ni-(Cu)-Ti-Zr-Si system. Scripta Mater. 53, 1467 (2005).
44.Xu, W., Zheng, R., Laws, K.J., Ringer, S.P., and Ferry, M.: In situ formation of crystalline flakes in Mg-based metallic glass composites by controlled inoculation. Acta Mater. 59, 7776 (2011).
45.Robin, L., Laws, K.J., Xu, W., Kurniawan, G., Privat, K., and Ferry, M.: The three-dimensional structure of Mg-rich plates in as-cast mg-based bulk metallic glass composites. Metall. Mater. Trans A 41, 1691 (2010).
46.Fan, C.L.C., Louzguine, D.V., and Inoue, A.: Nanocrystalline composites with high strength obtained in Zr-Ti-Ni-Cu-Al bulk amorphous alloys. Appl. Phys. Lett. 75, 340 (1999).
47.Hui, X., Dong, W., Chen, G.L., and Yao, K.F.: Formation, microstructure and properties of long-period order structure reinforced Mg-based bulk metallic glass composites. Acta Mater. 55, 907 (2007).
48.Tan, H., Zhang, Y., and Li, Y.: Synthesis of La-based in situ bulk metallic glass matrix composite. Intermetallics 10, 1203 (2002).
49.Leonhar, A., Xing, L.Q., Heilmaier, M., Gebert, A., Eckert, J., and Schultz, L.: Effect of crystalline precipitations on the mechanical behavior of bulk glass forming Zr-based alloys. Nanostruct. Mater. 10, 905 (1998).
50.Doglione, R., Spriano, S., and Battezzati, L.: Static mechanical characterization of a bulk amorphous and nanocrystalline Zr40Ti14Ni11Cu10Be25 alloy. Nanostruct. Mater. 8, 447 (1997).
51.Gilbert, C.J., Ritchie, R.O., and Johnson, W.L.: Fracture toughness and fatigue-crack propagation in a Zr-Ti-Ni-Cu-Be bulk metallic glass. Appl. Phys. Lett. 71, 476 (1997).
52.Xu, W., Robin, L., Zheng, R., Laws, K.J., and Ferry, M.: Phase redistribution in an in situ Mg-based bulk metallic glass composite during deformation in the supercooled liquid region. Scripta Mater. 63, 556 (2010).
53.Strife, J.R. and Prewo, K.M.: Mechanical behaviour of an amorphous metal ribbon reinforced resin-matrix composite. J. Mater. Sci. 17, 359 (1982).
54.Fan, C., Li, C.F., Inoue, A., and Haas, V.: Deformation behavior of Zr-based bulk nanocrystalline amorphous alloys. Phys. Rev. B 61, R3761 (2000).
55.Fu, X.L., Li, Y., and Schuh, C.A.: Mechanical properties of metallic glass matrix composites: effects of reinforcement character and connectivity. Scripta Mater. 56, 617 (2007).
56.Li, Z.G., Hui, X., Zhang, C.M., and Chen, G.L.: Formation of Mg–Cu–Zn–Y bulk metallic glasses with compressive strength over gigapascal. J. Alloys Compds. 454, 168 (2008).
57.Liang, J.Z. and Li, R.K.Y.: Rubber toughening in polypropylene – a review. J. Appl. Polym. Sci. 77, 409 (2000).
58.Hofmann, D.C.: Shape memory bulk metallic glass composites. Science 329, 1294 (2010).
59.Pauly, S., Gorantla, S., Wang, G., Kühn, U., and Eckert, J.: Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nature Mater. 9, 473 (2010).
60.Pauly, S., Liu, G., Wang, G., Das, J., Kim, K.B., Kühn, U., and Eckert, J.: Modeling deformation behavior of Cu-Zr-Al bulk metallic glass matrix composites. Appl. Phys. Lett. 95, 101906 (2009).
61.Gargarella, P., Pauly, S., Song, K.K., Hu, J., Barekar, N.S., Samadi Khoshkhoo, M., Teresiak, A., Wendrock, H., Kühn, U., Ruffing, C., Kerscher, E., and Eckert, J.: Ti-Cu-Ni shape memory bulk metallic glass composites. Acta Mater. 61, 151 (2013).

Related content

Powered by UNSILO

Recent developments in ductile bulk metallic glass composites

  • M. Ferry (a1), K.J. Laws (a1), C. White (a1), D.M. Miskovic (a1), K.F. Shamlaye (a1), W. Xu (a1) and O. Biletska (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.