Skip to main content
×
Home

Climate change and fossil fuel: An examination of risks for the energy industry and producer states

  • Jim Krane (a1)
Abstract
ABSTRACT

This article compiles and categorizes the various forms of climate risk facing the fossil fuel industry. The type and intensity of risk differs greatly among the three forms of fossil fuels, as well as between countries in the developing and developed world. The paper finds heightened risk for the coal industry and reduced risk for oil businesses, due to its lack of substitutes.

Burning coal, oil, and natural gas is the source of two-thirds of the world’s emissions of greenhouse gases. Sales of these fuels also represent the economic underpinning of resource-rich countries and the world’s largest firms. As such, steps taken to abate emissions undermine commercial opportunities to monetize fossil fuel reserves. Risks to the industry correlate with progress on climate goals.

This article analyzes recent literature on climate action strategy and finds that a new or intensified set of risks has arisen for the fossil fuel industry. These include government policies and legislation, financial restrictions among lenders and insurers, hostile legal and shareholder actions, changes in demand and geopolitics, as well as the onset of new competitive forces among states and technologies.

The exposure of carbon-based businesses to these risks and the potential for loss is neither distributed uniformly across the sector, nor adheres to a uniform time scale. Shareholder-owned firms in the developed world will be incentivized to react sooner than large state-owned resource owners in developing countries. The fates of the three fossil fuels also appear likely to play out differently. Demand for oil appears insulated by its lack of viable substitutes, while coal businesses are already undergoing climate-related action, pushed by decreasing social acceptance and constraining financial regulation. At the other end of the spectrum, climate action has improved the medium-term viability of low-carbon natural gas. What appears clear is that, as effects of climate change grow more pronounced, the industry faces a future that is less accepting of current practices.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Climate change and fossil fuel: An examination of risks for the energy industry and producer states
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Climate change and fossil fuel: An examination of risks for the energy industry and producer states
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Climate change and fossil fuel: An examination of risks for the energy industry and producer states
      Available formats
      ×
Copyright
Corresponding author
a) Address all correspondence to Jim Krane at jkrane@rice.edu
References
Hide All
1. World Bank: Total Natural Resources Rents (% of GDP) 2014, World Development Indicators (2015).
2. Citi GPS: Energy Darwinism II: Why a Low Carbon Future Doesn’t Have to Cost the Earth (Citicorp Global Perspectives & Solutions, 2015). Available at: https://www.privatebank.citibank.com/home/fresh-insight/gps-energy-darwinism.html (accessed January 31, 2017).
3. Keeping warming within the 2 °C threshold is generally accepted as preventing atmospheric carbon from rising from its current level of 400 parts per million to extend beyond 450 parts per million.
4. Carraro C. and Massetti E.: The improbable 2 C global warming target. Sito Vox (Centre for Economic Policy Research, 2009). Available at: http://voxeu.org/article/improbable-2-c-global-warming-target (accessed January 31, 2017).
5. Riahi K., Kriegler E., Johnson N., Bertram C., Den Elzen M., Eom J., Schaeffer M., Edmonds J., Isaac M., and Krey V.: Locked into Copenhagen pledges—implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol. Forecast. Soc. Change 90, 8 (2015).
6. Schleussner C-F., Rogelj J., Schaeffer M., Lissner T., Licker R., Fischer E.M., Knutti R., Levermann A., Frieler K., and Hare W.: Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Change 6, 827835 (2016).
7. For purposes of simplicity, hard coal and lignite are lumped together, as are crude oil and natural gas liquids.
8. The IEA sees natural gas demand rising by 30% by 2030, partly due to climate action. See: International Energy Agency: Energy and Climate Change. World Energy Outlook Special Report (IEA, Paris, 2015); p. 38. Available at: https://www.iea.org/publications/freepublications/publication/WEO2015SpecialReportonEnergyandClimateChange.pdf (accessed January 31, 2017).
9. Krane J.: Floods, Wildfires, Extreme Heat: Is the Climate Fighting Back Against the Fossil Fuel Industry? (Forbes, 2016). Available at: http://www.forbes.com/sites/thebakersinstitute/2016/08/19/floods-wildfires-extreme-heat-is-the-climate-fighting-back-against-the-fossil-fuel-industry/#746e90025263 (accessed January 31, 2017).
10. Bloomberg New Energy Finance: New Energy Outlook 2016 (2016). Available at: https://www.bloomberg.com/company/new-energy-outlook (accessed 31 January 2017).
11. Helsinki Times: Finland on Its Way to Become World’s First Country to Ban Coal Use in Energy Production (2016). Available at: http://www.helsinkitimes.fi/finland/finland-news/domestic/14333-finland-on-its-way-to-become-world-s-first-country-to-ban-coal-use-in-energy-production.html (accessed January 31, 2017).
12. Climate Action Tracker: Available at: http://climateactiontracker.org/global.html (accessed January 31, 2017). Individual pledges have been cataloged on the Carbon Tracker website.
13. Columbia University Earth Institute: What is the U.S. Commitment in Paris? (2015). Available at: http://blogs.ei.columbia.edu/2015/12/11/what-is-the-u-s-commitment-in-paris (accessed January 31, 2017).
14. See: World Bank Climate Change blog: British Columbia’s carbon tax shift: An environmental and economic success (2014). Available at: http://blogs.worldbank.org/climatechange/british-columbia-s-carbon-tax-shift-environmental-and-economic-success (accessed January 31, 2017); Also: “British Columbia/Canada”, Carbon Tax Center, (undated). http://www.carbontax.org/where-carbon-is-taxed/british-columbia (accessed January 31, 2017).
15. World Bank: State and Trends of Carbon Pricing 2016. Research Report (World Bank, Washington, 2016). Available at: https://openknowledge.worldbank.org/handle/10986/13334 (accessed January 31, 2017).
16. US Energy Information Administration: Gasoline Prices Tend to Have Little Effect on Demand for Car Travel (2014). Available at: http://www.eia.gov/todayinenergy/detail.php?id=19191 (accessed January 31, 2017).
17. Exxon Mobil: Global fuel demand in 2040—Projection. In The Outlook for Energy: A View to 2040. Slide presentation (2016); p. 57. Available at: http://cdn.exxonmobil.com/∼/media/global/files/outlook-for-energy/2016/2016-outlook-for-energy.pdf (accessed January 31, 2017).
18. Nordhaus W.D.: A new solution: The climate club. In New York Review of Books (2015). Available at: http://www.nybooks.com/articles/2015/06/04/new-solution-climate-club/ (accessed January 31, 2017).
19. Most “fracking bans” are not driven primarily by a wish to reduce GHG emissions. Neither have the bans shut-in ongoing production. They have thus far only restricted future opportunities. See: Kenneth B. Medlock III: The Land of Opportunity? Policy, Constraints, and Energy Security in North America. Baker Institute research paper (2014). Available at: http://bakerinstitute.org/media/files/files/94020ec4/CES-Pub-EnergySecurity-060214.pdf (accessed January 31, 2017).
20. Lemphers N.: The Climate Implications of the Proposed Keystone XL Oilsands Pipeline (Pembina Institute, 2013).
21. Dlouhy J.A. and Greiling Keane A.: U.S., Mexico, Canada pledge 50 percent clean Power by 2025 (Bloomberg, 2016). Available at: http://www.bloomberg.com/news/articles/2016-06-27/u-s-mexico-said-to-pledge-50-percent-clean-power-by-2025 (accessed January 31, 2017).
22. BP p.l.c.: BP Statistical Review of World Energy 2015 (BP, London, 2016).
23. US Energy Information Administration: Coal forecast. Short Term Energy Outlook (2016). Available at: http://www.eia.gov/outlooks/steo/report/coal.cfm (accessed January 31, 2017).
24. International Energy Agency: Coal. Medium-Term Market Report 2015 (2015). Available at: http://www.iea.org/newsroomandevents/pressreleases/2015/december/global-coal-demand-stalls-after-more-than-a-decade-of-relentless-growth.html (accessed January 31, 2017).
25. International Energy Agency: Re-Powering Markets: Market design and regulation during the transition to low-carbon power systems (International Energy Agency, 2016), p. 31.
26. Emissions stem from transport, compression, liquefaction and leaking methane, itself a powerful greenhouse gas. In Handbook of Clean Energy Systems, Volume 6, edited by Jinyue Yan (Wiley, Chichester, 2015); pp. 3517–3544.
27. Note that coal’s share is expected to rebound slightly in 2017. See: Short-Term Energy Outlook (US EIA, 2016); p. 2.
28. BP Energy Outlook 2016: Outlook to 2035. Slide presentation; see slide 14 (2016). Available at: https://www.bp.com/content/dam/bp/pdf/energy-economics/energy-outlook-2016/bp-energy-outlook-2016.pdf (accessed January 31, 2017).
29. US Department of Energy: Advancing Clean Transportation and Vehicle Systems and Technologies: Internal Combustion Engines, Quadrennial Technology Review 2015 (2015); p. 1. Available at: http://energy.gov/sites/prod/files/2015/11/f27/QTR2015-8C-Internal-Combustion-Engines.pdf (accessed January 31, 2017).
30. Covert T., Greenstone M., and Knittel C.R.: Will we ever stop using fossil fuels? J. Econ. Perspect. 30(1), 117 (2016).
31. McGlade C. and Ekins P.: The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. Nature 517(7533), 187 (2015).
32. Katakey R.: Energy Giant Shell Says Oil Demand Could Peak in Just Five Years (Bloomberg, 2016). Available at: https://www.bloomberg.com/news/articles/2016-11-02/europe-s-biggest-oil-company-thinks-demand-may-peak-in-5-years (accessed January 31, 2017).
33. Waldman P.: Saudi Arabia’s Plan to Extend the Age of Oil (Bloomberg, 2015). Available at: http://www.bloomberg.com/news/articles/2015-04-12/saudi-arabia-s-plan-to-extend-the-age-of-oil (accessed January 31, 2017).
34. Blas J. and Blewitt L.: Tesla Shock Means Global Gasoline Demand Has All But Peaked (Bloomberg, 2016). Available at: https://www.bloomberg.com/news/articles/2016-11-22/the-tesla-shock-global-gasoline-consumption-has-all-but-peaked (accessed January 31, 2017).
35. Exxon Mobil’s “Outlook for Energy: A View to 2040” finds no “peak” and projects average oil demand growth of 0.7% per year to 2040 . Available at: http://cdn.exxonmobil.com/∼/media/global/files/outlook-for-energy/2016/2016-outlook-for-energy.pdf (accessed January 31, 2017).
36. Roelofsen O., Sharma N., Sutorius R., and Tryggestad C.: Is Peak Oil Demand in Sight? (McKinsey, 2016). Available at: http://www.mckinsey.com/industries/oil-and-gas/our-insights/Is-peak-oil-demand-in-sight (accessed January 31, 2017).
37. Stevens P.: International Oil Companies: The Death of the Old Business Model (Chatham House, London, 2016).
38. Carney M.: Breaking the Tragedy of the Horizon—Climate Change and Financial Stability. Speech given at Lloyd’s of London (2015). Available at: http://www.bankofengland.co.uk/publications/Pages/speeches/2015/844.aspx (accessed January 31, 2017).
39. Green Faith: A Listing of known religious Divest and Reinvest efforts. Available at: http://www.greenfaith.org/programs/divest-and-reinvest/listing-of-known-religious-divestment-efforts (accessed January 31, 2017). The Church of England has divested from coal and tar sands investment.
40. Andrew Brown: Church of England Governing Body Approves Divestment Policy (The Guardian, 2015). Available at: https://www.theguardian.com/environment/2015/jul/14/church-of-england-governing-body-approves-divestment-policy (accessed January 31, 2017).
41. Campuses & Organizations That Have Divested, University of Wisconsin. Available at: http://www.uwosh.edu/es/climate-change/divestment/the-divested (accessed January 31, 2017).
42. Depending on the severity of warming that occurs by 2100, losses to global managed assets could range from $4.2 trillion in present value terms—The value of Japan’s GDP—To triple that, for a 6°C rise. See: Economist Intelligence Unit: The Cost of Inaction: Recognizing the Value at Risk from Climate Change (EIU, London, 2015). Available at: https://www.eiuperspectives.economist.com/sites/default/files/The%20cost%20of%20inaction_0.pdf (accessed January 31, 2017).
43. John Schwartz: Norway Will Divest From Coal in Push Against Climate Change (New York Times, 2015). Available at: http://www.nytimes.com/2015/06/06/science/norway-in-push-against-climate-change-will-divest-from-coal.html (accessed 31 January 2017).
44. Rockefeller Brothers Fund: Divestment Statement (2014). Available at: http://www.rbf.org/about/divestment (accessed January 31, 2017).
45. Wade T. and Driver A.: Rockefeller Family Fund Hits Exxon, Divests From Fossil Fuels (Reuters, 2016). Available at: http://www.reuters.com/article/us-rockefeller-exxon-mobil-investments-idUSKCN0WP266 (accessed January 31, 2017).
46. Ansar A., Caldecott B., and Tilbury J.: Stranded assets and the fossil fuel divestment campaign: What does divestment mean for the valuation of fossil fuel assets. Stranded assets Programme SSEE Univ. Oxf. Vol. 1 (2013).
47. Glomsrød S. and Wei T.: Business as UNusual: The Implications of Fossil Divestment and Green Bonds for Financial Flows, Economic Growth and Energy Market (February 16, 2016). Available at SSRN: https://ssrn.com/abstract=2733423 or http://dx.doi.org/10.2139/ssrn.2733423
48. Baron R. and Fischer D.: Divestment and Stranded Assets in the Low-Carbon Transition (OECD, Paris, 2015).
49. Fossil Free Indexes: The CalPERS Portfolio and Fossil Fuel Reserve-Related CO2 Emissions 2004–2013 (Fossil Free Indexes LLC, 2014). Available at: http://fossilfreeindexes.com/research/calpers-portoflio-financed-co2-emissions/ (accessed January 31, 2017).
50. Total of $38 million in value. D. Starkman: CalPERS set to divest from thermal-coal companies (Los Angeles Times, 2015). Available at: http://www.latimes.com/business/la-fi-calpers-divest-20151019-story.html (accessed January 31, 2017).
51. CalPERS to Set Talks With Thermal Coal Companies (CalPERS news release, 2015). Available at: https://www.calpers.ca.gov/page/newsroom/calpers-news/2015/coal-divestment-statement (accessed January 31, 2017).
52. Author interview with former GDF Suez employee who spoke on condition of anonymity (2016).
53. Blum J.: Dynegy speeds up purchase of 17 former Engie power plants (Houston Chronicle FuelFix, 2016). Available at: http://fuelfix.com/blog/2016/06/15/dynegy-speeds-up-purchase-of-17-power-plants-from-engie/ (accessed January 31, 2017).
54. Why the ENGIE Group will embark on no new coal-fired power plant projects (Engie Press Release, 2015). Available at: http://www.engie.com/en/group/opinions/energy-transition-climate/embark-on-no-new-coal-fired-power-plant-projects/ (accessed January 31, 2017).
55. Miller J.W. and Jarzemsky M.: Peabody Energy Files for Chapter 11 Bankruptcy Protection (Wall Street Journal, 2016). Available at: http://www.wsj.com/articles/peabody-energy-files-for-chapter-11-protection-from-creditors-1460533760 (accessed January 31, 2017).
56. HSBC: Assessing climate risk: Investors need to know how companies will be affected by climate change (HSBC Press Release, 2016). Available at: http://www.gbm.hsbc.com/insights/responsible-business/assessing-climate-risk (accessed January 31, 2017).
57. US Securities and Exchange Commission: Commission Guidance Regarding Disclosure Related to Climate Change (Interpretive Release, 2010); 17 CFR parts 211, 231, and 241. Available at: https://www.sec.gov/rules/interp/2010/33-9106.pdf (accessed January 31, 2017).
58. MSCI: 2015 ESG Trends to Watch (MSCI Inc., 2015); pp. 35. Available at: https://www.msci.com/documents/10199/6547ff32-d337-4c3a-9f01-f8c90f43cb91 (accessed January 31, 2017).
59. Bloomberg Carbon Risk Valuation Tool (2013). Available at: https://www.bloomberg.com/company/announcements/introducing-our-carbon-risk-valuation-tool (accessed January 31, 2017).
60. HSBC: Assessing Climate Risk: Investors Need to Know How Companies Will be Affected by Climate Change (HSBC Press Release, 2016). Available at: http://www.gbm.hsbc.com/insights/responsible-business/assessing-climate-risk (accessed January 31, 2017).
61. Ban Urges Insurance Industry to Take Leadership in Climate Change Response (UN News Center, 2016). Available at: http://www.un.org/apps/news/story.asp?NewsID=53676#.WEBJIrIrLmF (accessed January 31, 2017).
62. King E.: Insurers Told to Pull Cover from Coal Companies (Climate Home, 2015). Available at: http://www.climatechangenews.com/2015/03/25/insurers-told-to-pull-cover-from-coal-companies/ (accessed 31 January 2017).
63. U.S. Insurance sector Heavily Invested in fossil fuel sectors, despite growing Awareness of climate change risks (Ceres Press Release, 2016). Available at: https://www.ceres.org/press/press-releases/ceres-report-u.s.-insurance-sector-heavily-invested-in-fossil-fuel-sectors-despite-growing-awareness-of-climate-change-risks (accessed January 31, 2017).
64. California Insurance Commission: Climate Risk Carbon Initiative Questions & Answers (2016). Available at: http://www.insurance.ca.gov/0250-insurers/0300-insurers/0100-applications/ci/upload/Climate-Risk-Carbon-Initiative-Questions-4.pdf (accessed January 31, 2017).
65. Patel T.: Fossil-Fuel Divestment Gains Momentum with Axa Selling Coal (Bloomberg, 2015). Available at: https://www.bloomberg.com/news/articles/2015-05-22/fossil-fuel-divestment-picks-up-momentum-with-axa-selling-coal (accessed January 31, 2017).
66. Climate Protection Will Become Part of Core Business (Allianz SE Statement, 2015). Available at: https://www.allianz.com/en/press/news/financials/stakes_investments/151126_climate-protection-will-become-part-of-core-business (accessed January 31, 2017).
67. Export-Import Bank of the United States: Annex A: International Environmental and Social Guidelines (2016). Available at: http://www.exim.gov/policies/ex-im-bank-and-the-environment/international-environmental-and-social-guidelines (accessed January 31, 2017).
68. See, for example, BankTrack’s “Top Twenty Coal Banks” Ranking. Available at: http://coalbanks.org/#score (accessed January 31, 2017).
69. Citigroup: Sector Briefs: Oil Sands (2013). Available at: http://www.citigroup.com/citi/environment/data/1160844_Sector_Brief_Oil_Sands.pdf (accessed January 31, 2017).
70. Corkery M.: As Coal’s Future Grows Murkier, Banks Pull Financing (New York Times, 2016). Available at: http://www.nytimes.com/2016/03/21/business/dealbook/as-coals-future-grows-murkier-banks-pull-financing.html (accessed January 31, 2017).
71. Teixeira M.: Brazil Development Bank Scraps Financing for Coal-Fired Plants (Reuters, 2016). Available at: http://www.reuters.com/article/brazil-power-financing-idUSL2N1C913N (accessed January 31, 2017).
72. Natural Resources Defense Council: Coal Financing and Japan: Actions Speak Louder than Words (Natural Resources Defense Council Press Release, 2016). Available at: https://www.nrdc.org/experts/jake-schmidt/coal-financing-and-japan-actions-speak-louder-words (accessed January 31, 2017).
73. BankTrack: Banking on Coal 2014. Available at: http://www.banktrack.org/download/banking_on_coal_2014_pdf/banking_on_coal_2014.pdf (accessed January 31, 2017).
74. M. Elgin-Cossart and M. Hart: China’s new international financing institutions (Center for American Progress Policy Paper, 2015). Available at: https://www.americanprogress.org/issues/security/reports/2015/09/22/121668/chinas-new-international-financing-institutions/ (accessed January 31, 2017).
75. Citi GPS: Energy Darwinism II: Why a Low Carbon Future Doesn’t Have to Cost the Earth (Citicorp Global Perspectives & Solutions, 2015); p. 83. Available at: https://www.privatebank.citibank.com/home/fresh-insight/gps-energy-darwinism.html (accessed January 31, 2017).
76. Kepler Cheuvreux: Stranded Assets, Fossilized Reserves (2014). Available at: https://www.keplercheuvreux.com/pdf/research/eg_eg_253208.pdf (accessed January 31, 2017).
77. Pfeiffer A., Millar R., Hepburn C., and Beinhocker E.: The “2 °C capital stock” for electricity generation: Committed cumulative carbon emissions from the electricity generation sector and the transition to a green economy. Appl. Energy 179, 1395 (2016).
78. Birol F.: Energy Investment for Global Growth. Slide presentation, G-7 energy ministerial meeting, Japan (2016). Available at: https://www.iea.org/newsroomandevents/speeches/160501_G7EnergyMinisterial_slides.pdf (accessed January 31, 2017).
79. International Energy Agency: Special Report: World Energy Investment Outlook (2014); p. 43. Available at: https://www.iea.org/publications/freepublications/publication/WEIO2014.pdf (accessed January 31, 2017).
80. Caldecott B., Dericks G., Tulloch D.J., Kruitwagen L., and Kok I.: Stranded Assets and Thermal Coal in Japan: An Analysis of Environment-Related Risk Exposure (Smith School of Enterprise and the Environment, Oxford, 2016).
81. Carbon Tracker Initiative: Unburnable Carbon 2013: Wasted Capital and Stranded Assets (2013). Available at: http://www.carbontracker.org/report/unburnable-carbon-wasted-capital-and-stranded-assets (accessed January 31, 2017).
82. See, for example, Crooks E.: Analysts Dismiss ‘Carbon Bubble’ Warning (Financial Times, 2016). Available at: https://www.ft.com/content/9954e072-9587-11e6-a80e-bcd69f323a8b Also see: J. McMahon: ‘What Carbon Bubble?’ Says Oil Company Economist (Forbes, 2016). Available at: http://www.forbes.com/sites/jeffmcmahon/2016/03/17/what-carbon-bubble-says-oil-company-economist/ (accessed January 31, 2017).
83. Yergin D. and Pravettoni E.: Deflating the carbon bubble. IHS Markit Research Report (2016). Available at: https://www.ihs.com/Info/1016/strategic-report-systemic-risk.html (accessed January 31, 2017).
84. Mathieu C.: Carbon Risk and the Fossil Fuel Industry. Research Paper, IFRI Center for Energy (2015); pp. 78.
85. See, for example: What is Geoengineering? Oxford geoengineering Program. Available at: http://www.geoengineering.ox.ac.uk/what-is-geoengineering/what-is-geoengineering (accessed January 31, 2017).
86. A large volume of literature exists on this subject. See for example: E.A. Posner and C.R. Sunstein: Climate change justice. Geo LJ 96, 1565 (2007).
87. D.A. Farber: Basic compensation for victims of climate change. Univ. Pa. Law Rev. 155(6), 1605 (2007).
88. K. Healy and J.M. Tapick: Climate Change: It’s not just a policy issue for corporate Counsel—It’s a legal problem’ (2004). Columbia J. Environ. Law 29, 89 (n.d.).
89. Hancock E.E.: Red dawn, blue thunder, purple rain: Corporate risk of liability for global climate change and the SEC disclosure dilemma. Geo Intl Envtl Rev 17, 233 (2004).
90. Grossman D.A.: Warming up to a not-so-radical idea: tort-based climate change litigation. Colum. J. Envtl. L. 28, 1 (2003).
91. United States District Court for the District of Oregon Eugene Division: Case No. 6:15-cv-01517-TC (D. Or. Nov. 10, 2016) https://casetext.com/case/juliana-v-united-states-1.
92. Heidari N. and Pearce J.M.: A review of greenhouse gas emission liabilities as the value of renewable energy for mitigating lawsuits for climate change related damages. Renewable and Sustainable Energy Reviews 55, 899908 (2016).
93. Allen M.: Liability for climate change. Nature 421(6926), 891 (2003).
94. Sinn H-W.: Public policies against global warming: A supply side approach. Int. Tax Public Finance 15(4), 360 (2008).
95. This is a simplification of the Saudi strategy. Saudi officials take many aspects of oil markets into account. Climate factors may be outweighed by other interests, including price. In fact, the kingdom agreed to cut nearly 500,000 barrels of oil production a day in December 2016, amid a widespread agreement among producers. Further, even “unburnable” oil retains markets in petrochemicals, lubricants, etc.
96. Estimate from M. O’Hanlon: Energy Security: Economics, Politics, Strategies, and Implications, edited by Carlos Pascual and Jonathan Elkind (Brookings, Washington, 2010); pp. 59–72.
97. Verbruggen A. and Van de Graaf T.: The geopolitics of oil in a carbon-constrained world. IAEE Energy Forum 2(2), 21 (2015).
98. Fouquet R.: The slow search for solutions: Lessons from historical energy transitions by sector and service. Energy Policy 38(11), 6586 (2010).
99. Patel M., Neelis M., Gielen D., Olivier J., Simmons T., and Theunis J.: Carbon dioxide emissions from non-energy use of fossil fuels: Summary of key issues and conclusions from the country analyses. Resour. Conserv. Recycl. 45(3), 195 (2005).
100. Note that Exxon’s petrochemical ventures include joint ventures with Saudi Aramco, the most efficient and technologically proficient of the world’s national oil companies. See: P.R. Hartley and K.B. Medlock, III: Changes in the operational efficiency of national oil companies. Energy J. 34(2), 27 (2013).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Energy & Sustainability
  • ISSN: 2329-2229
  • EISSN: 2329-2237
  • URL: /core/journals/mrs-energy-and-sustainability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 186
Total number of PDF views: 479 *
Loading metrics...

Abstract views

Total abstract views: 1595 *
Loading metrics...

* Views captured on Cambridge Core between 18th April 2017 - 11th December 2017. This data will be updated every 24 hours.