Skip to main content

Surface engineering for phase change heat transfer: A review

  • Daniel Attinger (a1), Christophe Frankiewicz (a1), Amy R. Betz (a2), Thomas M. Schutzius (a3), Ranjan Ganguly (a4), Arindam Das (a5), Chang-Jin Kim (a6) and Constantine M. Megaridis (a7)...

Owing to advances in micro- and nanofabrication methods over the last two decades, the degree of sophistication with which solid surfaces can be engineered today has caused a resurgence of interest in the topic of engineering surfaces for phase change heat transfer. This review aims at bridging the gap between the material sciences and heat transfer communities. It makes the argument that optimum surfaces need to address the specificities of phase change heat transfer in the way that a key matches its lock. This calls for the design and fabrication of adaptive surfaces with multiscale textures and non-uniform wettability.

Among numerous challenges to meet the rising global energy demand in a sustainable manner, improving phase change heat transfer has been at the forefront of engineering research for decades. The high heat transfer rates associated with phase change heat transfer are essential to energy and industry applications; but phase change is also inherently associated with poor thermodynamic efficiency at low heat flux, and violent instabilities at high heat flux. Engineers have tried since the 1930s to fabricate solid surfaces that improve phase change heat transfer. The development of micro and nanotechnologies has made feasible the high-resolution control of surface texture and chemistry over length scales ranging from molecular levels to centimeters. This paper reviews the fabrication techniques available for metallic and silicon-based surfaces, considering sintered and polymeric coatings. The influence of such surfaces in multiphase processes of high practical interest, e.g., boiling, condensation, freezing, and the associated physical phenomena are reviewed. The case is made that while engineers are in principle able to manufacture surfaces with optimum nucleation or thermofluid transport characteristics, more theoretical and experimental efforts are needed to guide the design and cost-effective fabrication of surfaces that not only satisfy the existing technological needs, but also catalyze new discoveries.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Surface engineering for phase change heat transfer: A review
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Surface engineering for phase change heat transfer: A review
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Surface engineering for phase change heat transfer: A review
      Available formats
Corresponding author
Address all correspondence to Daniel Attinger at and Constantine M. Megaridis at
Hide All
1. Manglik, R.M. and Jog, M.A.: Molecular-to-large-scale heat transfer with multiphase interfaces: Current status and new directions. J. Heat Transfer 131, 121001 (2009).
2. Incropera, F.P. and DeWitt, D.P.: Fundamentals of Heat and Mass Transfer (John Wiley & Sons Inc., Hoboken, NJ, 1995).
3. Page, K., Wilson, M., Mordan, N.J., Chrzanowski, W., Knowles, J., and Parkin, I.P.: Study of the adhesion of Staphylococcus aureus to coated glass substrates. J. Mater. Sci. 46, 63556363 (2011).
4. Moran, M.J., Shapiro, H.N., Munson, B.R., and DeWitt, D.P.: Introduction to Thermal Systems Engineering (John Wiley and Sons, Danvers, MA, 2003).
5. Collier, J.G.: Convective Boiling and Condensation (McGraw-Hill, New York, 1972).
6. Bar-Cohen, A., Arik, M., and Ohadi, M.: Direct liquid cooling of high flux micro and nano electronic components. Proc. IEEE 94, 15491570 (2006).
7. McHale, J.P. and Garimella, S.V.: Bubble nucleation characteristics in pool boiling of a wetting liquid on smooth and rough surfaces. Int. J. Multiphase Flow 36, 249260 (2010).
8. Han, C.Y. and Griffith, P.: The Mechanism of Heat Transfer in Nucleate Pool Boiling (MIT, Cambridge, MA, 1962).
9. Demiray, F. and Kim, J.: Microscale heat transfer measurements during pool boiling of FC-72: Effect of subcooling. Int. J. Heat Mass Transfer 47, 32573268 (2004).
10. Jiang, Y.Y., Osada, H., Inagaki, M., and Horinouchi, N.: Dynamic modeling on bubble growth, detachment and heat transfer for hybrid-scheme computations of nucleate boiling. Int. J. Heat Mass Transfer 56, 640652 (2013).
11. Golobic, I., Petkovsek, J., and Kenning, D.B.R.: Bubble growth and horizontal coalescence in saturated pool boiling on a titanium foil, investigated by high-speed IR thermography. Int. J. Heat Mass Transfer 55, 13851402 (2012).
12. Son, G. and Dhir, V.K.: Numerical simulation of nucleate boiling on a horizontal surface at high heat fluxes. Int. J. Heat Mass Transfer 51, 25662582 (2008).
13. Dhir, V.K., Abarajith, H.S., and Li, D.: Bubble dynamics and heat transfer during pool and flow boiling. Heat Transfer Eng. 28, 608624 (2007).
14. Boreyko, J. and Chen, C-H.: Self-propelled dropwise condensate on superhydrophobic surfaces. Phys. Rev. Lett. 103, 184501 (2009).
15. Chen, C-H., Cai, Q., Tsai, C., Chen, C-L., Xiong, G., Yu, Y., and Ren, Z.: Dropwise condensation on superhydrophobic surfaces with two-tier roughness. Appl. Phys. Lett. 90, 173108 (2007).
16. Anand, S., Paxson, A.T., Dhiman, R., Smith, J.D., and Varanasi, K.K.: Enhanced condensation on lubricant-impregnated nanotextured surfaces. Langmuir 6, 1012210129 (2012).
17. Rykaczewski, K., Scott, J.H.J., and Fedorov, A.G.: Electron beam heating effects during environmental scanning electron microscopy imaging of water condensation on superhydrophobic surfaces. Appl. Phys. Lett. 98, 093106 (2011).
18. Lee, K-S., Jhee, S., and Yang, D-K.: Prediction of the frost formation on a cold flat surface. Int. J. Heat Mass Transfer 46, 37893796 (2003).
19. Hayashi, Y., Aoki, A., Adachi, S., and Hori, K.: Study of frost properties correlating with frost formation types. J. Heat Transfer 99, 239245 (1977).
20. Mishchenko, L., Hatton, B., Bahadur, V., Taylor, J.A., Krupenkin, T., and Aizenberg, J.: Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 4, 76997707 (2010).
21. Patankar, N.A.: Supernucleating surfaces for nucleate boiling and dropwise condensation heat transfer. Soft Matter 6, 16131620 (2010).
22. Ahn, H.S., Lee, C., Kim, H., Jo, H., Kang, S., Kim, J., Shin, J., and Kim, M.H.: Pool boiling CHF enhancement by micro/nanoscale modification of zircaloy-4 surface. Nucl. Eng. Des. 240, 33503360 (2010).
23. Kim, Y.H., Kim, S.J., Suh, K.Y., Rempe, J.L., Cheung, F.B., and Kim, S.B.: Internal vessel cooling feasibility attributed by critical heat flux in inclined rectangular gap. Nucl. Technol. 154, 1340 (2006).
24. Leung, J.C.M., Gallivan, K.A., Henry, R.E., and Bankoff, S.G.: Critical heat flux predictions during blowdown transients. Int. J. Multiphase Flow 7, 677701 (1981).
25. Kurokawa, K.: The Fukushima Nuclear Accident Independent Investigation Commission (The National Diet of Japan, Japan, 2012).
26. Kim, J.: U Maryland, Mechanical Engineering, personal communication with D.A. on the use of dimensionless analysis in pool boiling, May 2013.
27. Schrage, R.W.: A Theoretical Study of Interphase Mass Transfer (Columbia University Press, New York, NY, 1953).
28. Corman, J.C. and McLaughlin, M.H.: Boiling augmentation with structured surfaces. ASHRAE Trans. 82, 906918 (1976).
29. Mankovskij, O.N., Ioffe, O.B., Fibgant, L.G., and Tolczinskij, A.R.: About boiling mechanism on flooded surface with capillary-porous coating. Ing. Fiz. J. 30, 975982 (1976).
30. Ayub, Z.H. and Bergles, A.E.: Pool boiling from GEWA surfaces in water and R-113. Wärme-und Stoffübertragung 21, 209219 (1987).
31. Arai, N.: Heat transfer tubes enhancing boiling and condensation in heat exchangers of a refrigerating machine. ASHRAE Trans. 83, 5870 (1977).
32. Nakayama, W., Daikoku, T., Kuwahara, H., and Nakajima, T.: Dynamic model of enhanced boiling heat transfer on porous surfaces. J. Heat Transfer 102, 451456 (1980).
33. Takata, Y., Hidaka, S., Masuda, M., and Ito, T.: Pool boiling on a superhydrophilic surface. Int. J. Energy Res. 27, 111119 (2003).
34. Li, C. and Peterson, G.P.: Parametric study of pool boiling on horizontal highly conductive microporous coated surfaces. J. Heat Transfer-Trans. ASME 129, 14651475 (2007).
35. Li, C., Wang, Z., Wang, P.I., Peles, Y., Koratkar, N., and Peterson, G.P.: Nanostructured copper interfaces for enhanced boiling. Small 4, 10841088 (2008).
36. Weibel, J.A., Garimella, S.V., and North, M.T.: Characterization of evaporation and boiling from sintered powder wicks fed by capillary action. Int. J. Heat Mass Transfer 53, 42044215 (2010).
37. Cooke, D. and Kandlikar, S.G.: Effect of open microchannel geometry on pool boiling enhancement. Int. J. Heat Mass Transfer 55, 10041013 (2012).
38. Kandlikar, S.G.: Controlling bubble motion over heated surface through evaporation momentum force to enhance pool boiling heat transfer. Appl. Phys. Lett. 102, 051611 (2013).
39. Nukiyama, S.: Maximum and minimum values of heat transmitted from metal to boiling water under atmospheric pressure. Jpn. Soc. Mech. Eng. 37, 367374 (1934).
40. Mikic, B.B. and Rohsenow, W.M.: A new correlation of pool boiling data including effect of heating surface characteristics. J. Heat Transfer 91, 245250 (1969).
41. Hsu, K-Y.: On the size range of active nucleation cavities on a heating surface. ASME J. Heat Transfer 84, 207216 (1962).
42. Wang, C.H. and Dhir, V.K.: Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. J. Heat Transfer-Trans. ASME 115, 659669 (1993).
43. Betz, A.R., Xu, J., Qiu, H., and Attinger, D.: Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling? Appl. Phys. Lett. 97, 141909 (2010).
44. Jo, H., Ahn, H.S., Kang, S., and Kim, M.H.: A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces. Int. J. Heat Mass Transfer 54, 56435652 (2011).
45. Hwang, G.S. and Kaviany, M.: Critical heat flux in thin, uniform particle coatings. Int. J. Heat Mass Transfer 49, 844849 (2006).
46. Zuber, N.: Hydrodynamic aspects of boiling heat transfer, AEC report AECU-4439. Ph.D. Thesis, UCLA, 1959.
47. Dhir, V.K., Abarajith, H.S., and Warrier, G.R.: From nano to micro scales in boiling. In Microscale Heat Transfer Fundamentals and Applications, Proceedings of NATO-ASI Meeting, NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 193, Kakac, S., Vasiliev, L.L., Bayazitoglu, Y., and Yener, Y. eds.; Kulwer Academic Publishers: The Netherlands, 2005.
48. Theofanous, T.G., Dinh, T.N., Tu, J.P., and Dinh, A.T.: The boiling crisis phenomenon: Part II: Dryout dynamics and burnout. Exp. Therm. Fluid Sci. 26, 793810 (2002).
49. Webb, R.L.: Odyssey of the enhanced boiling surface. J. Heat Transfer 126, 10511059 (2004).
50. Berenson, P.J.: Transition boiling heat transfer from a horizontal surface; Technical Report 17; M.l.T. Heat Transfer Laboratory, 1960.
51. Hummel, R.L.: Means for increasing the heat transfer coefficient between a wall and boiling liquid. U.S. Patent No. 3207209, 1965.
52. Carey, V.P.: Liquid-Vapor Phase-Change Phenomena (Taylor & Francis Group, New York, NY, 2008).
53. Frenkel, J.: A general theory of heterophase fluctuations and pretransition phenomena. J. Chem. Phys. 7, 538 (1939).
54. Basu, N., Warrier, G.R., and Dhir, V.K.: Onset of nucleate boiling and active nucleation site density during subcooled flow boiling. J. Heat Transfer 124, 717 (2002).
55. Knapp, R.T.: Cavitation and nuclei. Trans. ASME 80, 1321 (1958).
56. Bankoff, S.G.: The prediction of surface temperature at incipient boiling. Chem. Eng. Prog., Symp. Ser. 55, 87 (1959).
57. Qi, Y. and Klausner, J.F.: Comparison of nucleation site density for pool boiling and gas nucleation. J. Heat Transfer 128, 13 (2006).
58. Betz, A.R., Jenkins, J., Kim, C-J., and Attinger, D.: Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces. Int. J. Heat Mass Transfer 57, 733741 (2013).
59. Tien, C.L.: A hydrodynamic model for nucleate pool boiling. Int. J. Heat Mass Transfer 5, 533540 (1962).
60. Forster, H.K. and Zuber, N.: Dynamics of vapor bubbles and boiling heat transfer. AIChE 1, 531535 (1955).
61. Haider, S.I. and Webb, R.L.: A transient micro-convection model of nucleate pool boiling. Int. J. Heat Mass Transfer 40, 36753688 (1997).
62. Utaka, Y., Kashiwabara, Y., and Ozaki, M.: Microlayer structure in nucleate boiling of water and ethanol at atmospheric pressure. Int. J. Heat Mass Transfer 57, 222230 (2013).
63. Cooper, M.G. and Lloyd, A.J.P.: The microlayer in nucleate pool boiling. Int. J. Heat Mass Transfer 12, 895913 (1969).
64. Rohsenow, W.: A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids (MIT, Cambridge, MA, 1951).
65. Dhir, V.K.: Boiling heat transfer. Annu. Rev. Fluid Mech. 30, 365401 (1998).
66. Abarajith, H.S. and Dhir, V.K.: A Numerical Study of the Effect of Contact Angle on the Dynamics of a Single Bubble during Pool Boiling (ASME - Heat Transfer Division, New Orleans, LA, 2002).
67. Kutateladze, S.S.: On the transition to film boiling under natural convection. Kotloturbostroenie 3, 10 (1948).
68. Lienhard, J.H. and Dhir, V.K.: Extended Hydrodynamic Theory to the Peak and Minimum Pool Boiling Heat Fluxes, NASA CR, Vol. 2270 (National Technical Information Service, 1973).
69. Haramura, Y. and Katto, Y.: A new hydrodynamic model of the critical heat flux, applicable widely to both pool and forced convective boiling on submerged bodies in saturated liquids. Int. J. Heat Mass Transfer 26, 389399 (1983).
70. Bui, T.D. and Dhir, V.K.: Transition boiling heat transfer on a vertical surface. J. Heat Transfer-Trans. ASME 107, 756763 (1985).
71. Kandlikar, S.G.: A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation. J. Heat Transfer 123, 1071 (2001).
72. Dhir, V.K. and Liaw, S.P.: Framework for a unified model for nucleate and transition pool boiling. J. Heat Transfer 111, 739746 (1989).
73. Kandlikar, S. and Garimella, S.: Heat Transfer and Fluid Flow in Minichannels and Microchannels (Elsevier, Oxford, UK, 2006); p. 227.
74. Rose, J.W.: Dropwise condensation theory and experiment: A review. Proc. Inst. Mech. Eng., Part A 216, 115128 (2002).
75. Graham, C. and Griffith, P.: Drop size distributions and heat-transfer in dropwise condensation. Int. J. Heat Mass Transfer 16, 337346 (1973).
76. Bejan, A.: Convective Heat Transfer (John Wiley & Sons Inc., Hoboken, NJ, 2003).
77. Schmidt, E., Schurig, W., and Sellschopp, W.: Versuche über die Kondensation von Wasserdampf in Film- und Tropfenform. Tech. Mech. Thermodyn. (Forsch. Ing. Wes.) 1(2), 5563 (1930).
78. Glassford, A.P.M.: Practical model for molecular contaminant deposition kinetics. J. Thermophys. Heat Transfer 6, 656664 (1992).
79. Chen, L.H., Chen, C.Y., and Lee, Y.L.: Nucleation and growth of clusters in the process of vapor deposition. Surf. Sci. 429, 150160 (1999).
80. Le Fevre, E.J. and Rose, J.W.: A theory of heat transfer by dropwise condensation. In Proceedings of the Third International Heat Transfer Conference, Vol. 2, Chicago, IL, 1966; p. 362375.
81. Rose, J.W.: A theory of heat transfer by dropwise condensation. In Proceedings of the Third International Heat Transfer Conference, Vol. 10, Chicago, IL, 1967.
82. Rose, J.W.: Interphase matter transfer, the condensation coefficient and dropwise condensation. In Proceedings of 11th International Conference, Kyongju, Vol. 2, 1998.
83. Mikic, B.B.: On mechanism of dropwise condensation. Int. J. Heat Mass Transfer 12, 13111323 (1969).
84. Quere, D., Azzopardi, M.J., and Delattre, L.: Drops at rest on a tilted plane. Langmuir 14, 22132216 (1998).
85. Kim, S. and Kim, K.J.: Dropwise condensation modeling suitable for superhydrophobic surfaces. J. Heat Transfer 133, 081502 (2011).
86. Tanaka, H.: Measurements of drop-size distributions during transient dropwise condensation. J. Heat Transfer-Trans. ASME 97, 341346 (1975).
87. Wu, Y.T., Yang, C.X., and Yuan, X.G.: Drop distributions and numerical simulation of dropwise condensation heat transfer. Int. J. Heat Mass Transfer 44, 44554464 (2001).
88. Ulrich, S., Stoll, S., and Pefferkorn, E.: Computer simulations of homogeneous deposition of liquid droplets. Langmuir 20, 17631771 (2004).
89. Wenzel, H.: Versuche über Tropfenkondensation, Allg. Wärmetech 8, 839845 (1957).
90. Bonner, R.W.: Correlation for dropwise condensation heat transfer: Water, organic fluids, and inclination. Int. J. Heat Mass Transfer 61, 245253 (2013).
91. Ma, X.H., Zhou, X.D., Lan, Z., Li, Y.M., and Zhang, Y.: Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation. Int. J. Heat Mass Transfer 51, 17281737 (2008).
92. Grooten, M.H.M. and van der Geld, C.W.M.: Dropwise condensation from flowing air-steam mixtures: Diffusion resistance assessed by controlled drainage. Int. J. Heat Mass Transfer 54, 45074517 (2011).
93. Minkowycz, W.J. and Sparrow, E.M.: Condensation heat transfer in the presence of non-condensables, interfacial resistance, super heating variable properties and diffusion. Int. J. Heat Mass Transfer 9, 11251144 (1966).
94. Utaka, Y. and Nishikawa, T.: Measurement of condensate film thickness for solutal Marangoni condensation applying laser extinction method. J. Enhanced Heat Transfer 10, 119129 (2003).
95. Utaka, Y. and Kamiyama, T.: Condensate drop movement in Marangoni condensation by applying bulk temperature gradient on heat transfer surface. Heat Transfer—Asian Res. 37, 387397 (2008).
96. Tanasawa, I.: Advances in condensation heat transfer. Advances in Heat Transfer, Vol. 21 (Elsevier, New York, 1991).
97. Nusselt, W.: Die Oberflachen Kondensation des Wasserdampfes, Zeitschrift. Ver. Dtsch. Ing. 60, 541546 (1916).
98. Rohsenow, W.M.: Heat transfer and temperature distribution in laminar film condensation. Trans. ASME J. Fluids Eng. 78, 1645 (1956).
99. Thibaut Brian, P.L., Reid, R.C., and Shah, Y.T.: Frost deposition on cold surfaces. Ind. Eng. Chem. Fundam. 9, 375380 (1970).
100. Fortin, G., Laforte, J-L., and Ilinca, A.: Heat and mass transfer during ice accretion on aircraft wings with an improved roughness model. Int. J. Heat Mass Transfer 45, 595606 (2006).
101. Iragorry, J., Tao, Y.X., and Jia, S.: A critical review of properties and models for frost formation analysis. HVACR Res. 10, 393420 (2004).
102. Piucco, R.O., Hermes, C.J.L., Melo, C., and Barbosa, J.R. Jr.: A study of frost nucleation on flat surfaces. Exp. Therm. Fluid Sci. 32, 17101715 (2008).
103. Ryerson, C.C.: Ice protection of offshore platforms. Cold Reg. Sci. Technol. 65, 97110 (2011).
104. Fletcher, N.H.: The Chemical Physics of Ice (Cambridge University Press, London, 1970).
105. Jung, S., Dorrestijn, M., Raps, D., Das, A., Megaridis, C.M., and Poulikakos, D.: Are superhydrophobic surfaces best for icephobicity? Langmuir 27, 30593066 (2011).
106. Jung, S., Tiwari, M.K., Doan, N.V., and Poulikakos, D.: Mechanism of supercooled droplet freezing on surfaces. Nat. Commun. 3, 615 (2012).
107. Na, B. and Webb, R.L.: A fundamental understanding of factors affecting frost nucleation. Int. J. Heat Mass Transfer 46, 37973808 (2003).
108. Varanasi, K.K., Deng, T., Smith, J.D., Hsu, M., and Bhate, N.: Frost formation and ice adhesion on superhydrophobic surfaces. Appl. Phys. Lett. 97, 234102 (2010).
109. Lee, H., Shin, J., Ha, S., Choi, B., and Lee, J.: Frost formation on a plate with different surface hydrophilicity. Int. J. Heat Mass Transfer 47, 48814893 (2004).
110. Cao, L.L., Jones, A.K., Sikka, V.K., Wu, J.Z., and Gao, D.: Anti-icing superhydrophobic coatings. Langmuir 25, 1244412448 (2009).
111. Kim, P., Wong, T.S., Alvarenga, J., Kreder, M.J., Adorno-Martinez, W.E., and Aizenberg, J.: Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano 6, 65696577 (2012).
112. Jung, S., Tiwari, M.K., and Poulikakos, D.: Frost halos from supercooled water droplets. Proc. Natl. Acad. Sci. U. S. A. 109, 1607316078 (2012).
113. Na, B. and Webb, R.L.: Mass transfer on and within a frost layer. Int. J. Heat Mass Transfer 47, 899911 (2004).
114. Liu, Z., Zhang, X., Wang, H., Meng, S., and Cheng, S.: Influences of surface hydrophilicity on frost formation on a vertical cold plate under natural convection conditions. Exp. Therm. Fluid Sci. 31, 789794 (2007).
115. Le Gall, R., Grillot, J.M., and Jallut, C.: Modelling of frost growth and densification. Int. J. Heat Mass Transfer 40, 31773187 (1997).
116. Webb, R.L.: The evolution of enhanced surface geometries for nucleate boiling. Heat Transfer Eng. 2, 4669 (1981).
117. Berenson, P.J.: Experiments on pool-boiling heat transfer. Int. J. Heat Mass Transfer 5, 985999 (1962).
118. Webb, R.L.: Heat transfer surface having a high boiling heat transfer coefficient. U.S. Patent No. 3696861A, 1972.
119. Zhou, F., Izgorodin, A., Hocking, R., Spiccia, L., and MacFarlane, D.: Electrodeposited MnOx films from ionic liquid for electrocatalytic water oxidation. Adv. Energy Mater. 2, 10131021 (2012).
120. Jiang, Z., Tang, Y., Tay, Q., Zhang, Y., Malyi, O.I., Wang, D., Deng, J., Lai, Y., Zhou, H., Chen, X., Dong, Z., and Chen, Z.: Understanding the role of nanostructures for efficient hydrogen generation on immobilized photocatalysts. Adv. Energy Mater. 3, 13681380 (2013).
121. Dahl, M.M. and Erb, L.E.: Liquid heat exchanger interface and method. U.S. Patent No. 3990862, 1976.
122. Jiang, W. and Malshe, A.P.: A novel cBN composite coating design and machine testing: A case study in turning. Surf. Coat. Technol. 206, 273279 (2011).
123. Kim, C-J. and Bergles, A.E.: Particulate Phenomena and Multiphase Transport, Vol. 2 (Hemisphere, Washington, D.C., 1988); pp. 318.
124. You, S.M. and O'Connor, J.P.: Boiling enhancement coating. U.S. Patent No. 5814392, 1998.
125. Xia, Y. and Whitesides, G.M.: Soft lithography. Annu. Rev. Mater. Res. 28, 153184 (1998).
126. Lu, C. and Lipson, R.H.: Interference lithography: A powerful tool for fabricating periodic structures. Laser Photonics Rev. 4, 568580 (2009).
127. Plymouth Grating Laboratory: Scanning-beam interference lithography
128. Sun, G., Hur, J.I., Zhao, X., and Kim, C-J.: Fabrication of very-high-aspect-ratio micro metal posts and gratings by photoelectrochemical etching and electroplating. J. MEMS 20, 876884 (2011).
129. Lee, C. and Kim, C-J.: Influence of surface hierarchy of superhydrophobic surfaces on liquid slip. Langmuir 27, 42434248 (2011).
130. Weibel, J.A., Kim, S.S., Fisher, T.S., and Garimella, S.V.: Carbon nanotube coatings for enhanced capillary-fed boiling from porous microstructures. Nanoscale Microscale Thermophys. Eng. 16, 117 (2012).
131. Lu, Y-W. and Kandlikar, S.G.: Nanoscale surface modification techniques for pool boiling enhancement: A critical review and future directions. Heat Transfer Eng. 32, 827842 (2011).
132. Gerasopoulos, K., McCarthy, M., Banerjee, P., Fan, X., Culver, J.N., and Ghodssi, R.: Biofabrication methods for the patterned assembly and synthesis of viral nanotemplates. Nanotechnol. 21, 055304 (2010).
133. Chu, K-H., Enright, R., and Wang, E.N.: Structured surfaces for enhanced pool boiling heat transfer. Appl. Phys. Lett. 100, 241603 (2012).
134. Choi, C-H. and Kim, C.J.: Fabrication of dense array of tall nanostructures over a very large sample area with sidewall profile and tip sharpness control. Nanotechnol. 17, 53265333 (2006).
135. Du, K., Wathuthanthri, I., Mao, W., Xu, W., and Choi, C.H.: Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography. Nanotechnol. 22, 285306 (2011).
136. Morimoto, T., Sanada, Y., and Tomonaga, H.: Wet chemical functional coatings for automotive glasses and cathode ray tubes. Thin Solid Films 392, 214222 (2001).
137. Carrino, L., Moroni, G., and Polini, W.: Cold plasma treatment of polypropylene surface: A study on wettability and adhesion. J. Mater. Process. Technol. 121, 373382 (2002).
138. Bobzin, K., Bagcivan, N., Goebbels, N., Yilmaz, K., Hoehn, B.R., Michaelis, K., and Hochmann, M.: Lubricated PVD CrAlN and WC/C coatings for automotive applications. Surf. Coat. Technol. 204, 10971101 (2009).
139. Genzer, J. and Efimenko, K.: Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review. Biofouling 22, 339360 (2006).
140. Wang, X., Zhi, L., and Mullen, K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323327 (2007).
141. Barthlott, W. and Neinhuis, C.: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 18 (1997).
142. Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L., and Zhu, D.: Super-hydrophobic surfaces: From natural to artificial. Adv. Mater. 14, 18571860 (2002).
143. Feng, X., Feng, L., Jin, M., Zhai, J., Jiang, L., and Zhu, D.: Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J. Am. Chem. Soc. 126, 6263 (2004).
144. Sigal, G.B., Mrksich, M., and Whitesides, G.M.: Effect of surface wettability on the adsorption of proteins and detergents. J. Am. Chem. Soc. 120, 34643473 (1998).
145. de Gennes, P.G.: Wetting: Statics and dynamics. Rev. Mod. Phys. 57, 827863 (1985).
146. de Gennes, P.G., Brochard-Wyart, F., and Quéré, D.: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2004).
147. Marmur, A.: Hydro- hygro- oleo- omni-phobic? Terminology of wettability classification. Soft Matter 8, 6867 (2012).
148. Young, T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. 95, 6587 (1804).
149. Dupré, A. and Dupré, P.: Théorie mécanique de la chaleur (Gauthier-Villars, Paris, 1869).
150. Wenzel, R.N.: Resistance of solid surface to wetting by water. Ind. Eng. Chem. 28, 988994 (1936).
151. Cassie, A.B.D. and Baxter, S.: Wettability of porous surfaces. Trans. Faraday Soc. 40, 546551 (1944).
152. Feng, X.J. and Jiang, L.: Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 18, 30633078 (2006).
153. Feng, L., Zhang, Y., Xi, J., Zhu, Y., Wang, N., Xia, F., and Jiang, L.: Petal effect: A superhydrophobic state with high adhesive force. Langmuir 24, 41144119 (2008).
154. Dorrer, C. and Rühe, J.: Some thoughts on superhydrophobic wetting. Soft Matter 5, 51 (2009).
155. Nosonovsky, M. and Bhushan, B.: Biomimetic superhydrophobic surfaces: Multiscale approach. Nano Lett. 7, 26332637 (2007).
156. Cebeci, F.Ç., Wu, Z., Zhai, L., Cohen, R.E., and Rubner, M.F.: Nanoporosity-driven superhydrophilicity: A means to create multifunctional antifogging coatings. Langmuir 22, 28562862 (2006).
157. Dorrer, C. and Ruehe, J.: Condensation and wetting transitions on microstructured ultrahydrophobic surfaces. Langmuir 23, 38203824 (2007).
158. Vakarelski, I.U., Patankar, N.A., Marston, J.O., Chan, D.Y., and Thoroddsen, S.T.: Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489, 274277 (2012).
159. Johnson, R.E. and Dettre, R.H.: Contact Angle, Wettability and Adhesion (Advances in Chemistry Series 43) (American Chemical Society, Washington, DC, 1964).
160. Oner, D. and McCarthy, T.J.: Ultrahydrophobic surfaces. Effect of topography length scales on wettability. Langmuir 16, 77777782 (2000).
161. Richard, D. and Quere, D.: Viscous drops rolling on a tilted non-wettable solid. Europhys. Lett. 48, 286291 (1999).
162. Dhir, V.K.: Nucleate and transition boiling heat transfer under pool and external flow conditions. Int. J. Heat Fluid Flow 12, 290314 (1991).
163. Takata, Y., Hidaka, S., Cao, J.M., Nakamura, T., Yamamoto, H., Masuda, M., and Ito, T.: Effect of surface wettability on boiling and evaporation. Energy 30, 209220 (2005).
164. Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., and Watanabe, T.: Light-induced amphiphilic surfaces. Nature 388, 431432 (1997).
165. Zisman, W.A.: Contact Angle, Wettability, and Adhesion, Ch. 2, pp. 151 (American Chemical Society, Washington, DC, 1964).
166. Phan, H.T., Caney, N., Marty, P., Colasson, S., and Gavillet, J.: How does surface wettability influence nucleate boiling? C. R. Mécanique 337, 251259 (2009).
167. Phan, H.T., Caney, N., Marty, P., Colasson, S., and Gavillet, J.: Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism. Int. J. Heat Mass Transfer 52, 54595471 (2009).
168. Liaw, S.P. and Dhir, V.K.: Effect of surface wettability on transition boiling heat transfer from a vertical surface. In Proceedings of 8th International Heat Transfer Conference, Vol. 4, San Francisco, CA, 1986.
169. Ma, X.H., Rose, J.W., Xu, D.Q., Lin, J.F., and Wang, B.X.: Advances in dropwise condensation heat transfer: Chinese research. Chem. Eng. J. 78, 8793 (2000).
170. Zhao, Q. and Burnside, B.M.: Dropwise condensation of steam on ion-implanted condenser surfaces. Heat Recovery Syst. CHP 14, 525534 (1994).
171. Azimi, G., Dhiman, R., Kwon, H-M., Paxson, A.T., and Varanasi, K.K.: Hydrophobicity of rare-earth oxide ceramics. Nat. Mater. 12, 315320 (2013).
172. Vachon, R.I., Nix, G.H., Tanger, G.E., and Cobb, R.O.: Pool boiling heat transfer from Teflon-coated stainless steel. J. Heat Transfer 91, 364369 (1969).
173. Bain, C.D., Troughton, E.B., Tao, Y.T., Evall, J., Whitesides, G.M., and Nuzzo, R.G.: Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc. 111, 321335 (1989).
174. Balss, K.M., Avedisian, C.T., Cavicchi, R.E., and Tarlov, M.J.: Nanosecond imaging of microboiling behavior on pulsed-heated Au films modified with hydrophilic and hydrophobic self-assembled monolayers. Langmuir 21, 1045910467 (2005).
175. Bourdon, B., Rioboo, R., Marengo, M., Gosselin, E., and De Coninck, J.: Influence of the wettability on the boiling onset. Langmuir 28, 16181624 (2012).
176. Thomas, O.C., Cavicchi, R.E., and Tarlov, M.J.: Effect of surface wettability on fast transient microboiling behavior. Langmuir 19, 61686177 (2003).
177. Blackman, L.C.F., Dewar, M.J.S., and Hampson, H.: An investigation of compounds promoting the dropwise condensation of steam. J. Appl. Chem. 7, 160171 (1957).
178. Tanner, D.W., Pope, D., Potter, C.J., and West, D.: Heat transfer in dropwise condensation—Part II surface chemistry. Int. J. Heat Mass Transfer 8, 427436 (1965).
179. Hare, E.F., Shafrin, E.G., and Zisman, W.A.: Properties of films of adsorbed fluorinated acids. J. Phys. Chem. 58, 236239 (1954).
180. Zhao, Q., Zhang, D.C., Lin, J.F., and Wang, G.M.: Dropwise condensation on L-B film surface. Chem. Eng. Process. 35, 473477 (1996).
181. Forrest, E., Williamson, E., Buongiorno, J., Hu, L-W., Rubner, M., and Cohen, R.: Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings. Int. J. Heat Mass Transfer 53, 5867 (2010).
182. Hsu, C-C. and Chen, P-H.: Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings. Int. J. Heat Mass Transfer 55, 37133719 (2012).
183. Smith, J.D., Meuler, A.J., Bralower, H.L., Venkatesan, R., Subramanian, S., Cohen, R.E., McKinley, G.H., and Varanasi, K.K.: Hydrate-phobic surfaces: Fundamental studies in clathrate hydrate adhesion reduction. Phys. Chem. Chem. Phys. 14, 60136020 (2012).
184. Paxson, A.T., Yagüe, J.L., Gleason, K.K., and Varanasi, K.K.: Stable dropwise condensation for enhancing heat transfer via the initiated chemical vapor deposition (iCVD) of grafted polymer films. Adv. Mater. 26, 418423 (2013).
185. Wen, D.S. and Wang, B.X.: Effects of surface wettability on nucleate pool boiling heat transfer for surfactant solutions. Int. J. Heat Mass Transfer 45, 17391747 (2002).
186. Morgenthaler, S., Zink, C., and Spencer, N.D.: Surface-chemical and -morphological gradients. Soft Matter 4, 419434 (2008).
187. Zhai, L., Berg, M.C., Cebeci, F.C., Kim, Y., Milwid, J.M., Rubner, M.F., and Cohen, R.E.: Patterned superhydrophobic surfaces: Toward a synthetic mimic of the Namib Desert Beetle. Nano Lett. 6, 12131217 (2006).
188. Parker, A.R. and Lawrence, C.R.: Water capture by a desert beetle. Nature 414, 3334 (2001).
189. Chaudhury, M.K. and Whitesides, G.M.: How to make water run uphill. Science 256, 15391541 (1992).
190. Gaertner, R.F.: Method and means for increasing the heat transfer coefficient between a wall and boiling liquid. U.S. Patent No. 3301314, 1967.
191. Lopez, G.P., Biebuyck, H.A., Frisbie, C.D., and Whitesides, G.M.: Imaging of features on surfaces by condensation figures. Science 260, 647649 (1993).
192. Abbott, N.L., Folkers, J.P., and Whitesides, G.M.: Manipulation of the wettability of surfaces on the 0.1-micrometer to 1-micrometer scale through micromachining and molecular self-assembly. Science 257, 13801382 (1992).
193. Thickett, S.C., Neto, C., and Harris, A.T.: Biomimetic surface coatings for atmospheric water capture prepared by dewetting of polymer films. Adv. Mater. 23, 37183722 (2011).
194. Varanasi, K.K., Hsu, M., Bhate, N., Yang, W., and Deng, T.: Spatial control in the heterogeneous nucleation of water. Appl. Phys. Lett. 95, 094101 (2009).
195. Mishchenko, L., Aizenberg, J., and Hatton, B.D.: Spatial control of condensation and freezing on superhydrophobic surfaces with hydrophilic patches. Adv. Funct. Mater. 40, 546551 (2013).
196. Jokinen, V., Sainiemi, L., and Franssila, S.: Complex droplets on chemically modified silicon nanograss. Adv. Mater. 20, 34533456 (2008).
197. Lee, A., Moon, M-W., Lim, H., Kim, W-D., and Kim, H-Y.: Water harvest via dewing. Langmuir 28, 1018310191 (2012).
198. Tadanaga, K., Morinaga, J., Matsuda, A., and Minami, T.: Superhydrophobic-superhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method. Chem. Mater. 12, 590592 (2000).
199. Branson, E.D., Shah, P.B., Singh, S., and Brinker, C.J.: Preparation of hydrophobic coatings. U.S. Patent No. 7,485,343, 2009.
200. Garrod, R.P., Harris, L.G., Schofield, W.C.E., McGettrick, J., Ward, L.J., Teare, D.O.H., and Badyal, J.P.S.: Mimicking a stenocara beetle's back for microcondensation using plasmachemical patterned superhydrophobic-superhydrophilic surfaces. Langmuir 23, 689693 (2007).
201. Pastine, S.J., Okawa, D., Kessler, B., Rolandi, M., Llorente, M., Zettl, A., and Frechet, J.M.J.: A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides. J. Am. Chem. Soc. 130, 42384239 (2008).
202. Her, E.K., Ko, T.J., Lee, K.R., Oh, K.H., and Moon, M.W.: Bioinspired steel surfaces with extreme wettability contrast. Nanoscale 4, 29002905 (2012).
203. Kobaku, S.P.R., Kota, A.K., Lee, D.H., Mabry, J.M., and Tuteja, A.: Patterned superomniphobic-superomniphilic surfaces: Templates for site-selective self-assembly. Angew. Chem. Int. Ed. 51, 1010910113 (2012).
204. Schutzius, T.M., Bayer, I.S., Jursich, G.M., Das, A., and Megaridis, C.M.: Superhydrophobic-superhydrophilic binary micropatterns by localized thermal treatment of polyhedral oligomeric silsesquioxane (POSS)-silica films. Nanoscale 4, 53785385 (2012).
205. Ueda, E. and Levkin, P.A.: Emerging applications of superhydrophilic-superhydrophobic micropatterns. Adv. Mater. 25, 12341247 (2013).
206. Sarwar, M.S., Jeong, Y.H., and Chang, S.H.: Subcooled flow boiling CHF enhancement with porous surface coatings. Int. J. Heat Mass Transfer 50, 36493657 (2007).
207. Zhou, X. and Bier, K.: Pool boiling heat transfer from a horizontal tube coated with oxide ceramics. Int. J. Refrig. 20, 552560 (1997).
208. Zimmermann, J., Rabe, M., Artus, G.R.J., and Seeger, S.: Patterned superfunctional surfaces based on a silicone nanofilament coating. Soft Matter 4, 450452 (2008).
209. Jakob, M. and Fritz, W.: Versuche über den Verdampfungsvorgang. Forsch. Ingenieurwes. 2, 435447 (1931).
210. Corty, C. and Foust, A.S.: Surface variables in nucleate boiling. Chem. Eng. Prog., Symp. Ser. 51, 112 (1955).
211. Kurihara, H.M. and Myers, J.E.: The effects of superheat and surface roughness on boiling coefficients. AIChE J. 6, 8391 (1960).
212. Bergles, A.E. and Manglik, R.M.: Current progress and new developments in enhanced heat and mass transfer. J. Enhanced Heat Transfer 20, 115 (2013).
213. Bankoff, S.G.: Entrapment of gas in the spreading of a liquid over a rough surface. AIChE J. 4(1), 2426 (1958).
214. Bankoff, S.G.: Ebullition from solid surfaces in the presence of pre-existing gaseous phase. Trans. ASME 79, 735 (1957).
215. Lorenz, J.J., Mikic, B.B., and Rohsenow, W.M.: The Effects of Surface Conditions on Boiling Characteristics (Issue 79 of Technical Report) (M.I.T. Engineering Projects Laboratory, 1972).
216. Zhang, B.J., Kim, K.J., and Yoon, H.: Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling. Int. J. Heat Mass Transfer 55, 74877498 (2012).
217. Kim, C-J.: Structured surfaces for enhanced nucleate boiling. M.S. Thesis, Iowa State University, 1985.
218. Clark, H.B., Strenge, P.S., and Westwater, J.: Active sites for nucleate boiling. Chem. Eng. Prog., Symp. Ser. 55, 103110 (1959).
219. Yang, S.R. and Kim, R.H.: A mathematical model of the nucleation site density in terms of the surface characteristics. Int. J. Heat Mass Transfer 31, 11271135 (1988).
220. Griffith, P. and Wallis, J.D.: The Role of Surface Conditions in Nucleate Boiling (MIT, Cambridge, MA, 1958).
221. Shoji, M.: Studies of boiling chaos: A review. Int. J. Heat Mass Transfer 47, 11051128 (2004).
222. Marto, P.J. and Rohsenow, W.: Effects of surface conditions on nucleate pool boiling of sodium. J. Heat Transfer 88, 196203 (1966).
223. Milton, R.M.: Heat exchange system. U.S. Patent No. 3384154, 1968.
224. Milton, R.M.: Heat exchange system. U.S. Patent No. 3523577, 1970.
225. Milton, R.M.: Heat exchange system with porous boiling layer. U.S. Patent No. 3587730, 1971.
226. Chien, L.H. and Webb, R.L.: Visualization of pool boiling on enhanced surfaces. Exp. Therm. Fluid Sci. 16, 332341 (1998).
227. Chien, L-H. and Webb, R.L.: A nucleate boiling model for structured enhanced surfaces. Int. J. Heat Mass Transfer 41, 21832195 (1998).
228. Ujereh, S., Fisher, T.S., and Mudawar, I.: Effect of carbon nanotube arrays on nucleate pool boiling. Int. J. Heat Mass Transfer 50, 40234038 (2007).
229. Gaertner, R.F.: Effect of Heater Surface Chemistry on the Level of Burnout Heat Flux in Pool Boiling (General Electric Laboratory, Schenectady, NY, 1963).
230. Bourdon, B., Di Marco, P., Rioboo, R., Marengo, M., and De Coninck, J.: Enhancing the onset of pool boiling by wettability modification on nanometrically smooth surfaces. Int. Commun. Heat Mass Transfer 45, 1115 (2013).
231. Takata, Y., Hidaka, S., and Uraguchi, T.: Boiling feature on a super water-repellent surface. Heat Transfer Eng. 27, 2530 (2006).
232. Lu, M-C., Chen, R., Srinivasan, V., Carey, V.P., and Majumdar, A.: Critical heat flux of pool boiling on Si nanowire array-coated surfaces. Int. J. Heat Mass Transfer 54, 53595367 (2011).
233. Chen, R., Lu, M.C., Srinivasan, V., Wang, Z., Cho, H.H., and Majumdar, A.: Nanowires for enhanced boiling heat transfer. Nano Lett. 9, 548553 (2009).
234. Yao, Z., Lu, Y.W., and Kandlikar, S.G.: Effects of nanowire height on pool boiling performance of water on silicon chips. Int. J. Therm. Sci. 50, 20842090 (2011).
235. Yao, Z., Lu, Y-W., and Kandlikar, S.G.: Direct growth of copper nanowires on a substrate for boiling applications. Micro Nano Lett. 6, 563566 (2011).
236. Dai, X., Huang, X., Yang, F., Li, X., Sightler, J., Yang, Y., and Li, C.: Enhanced nucleate boiling on horizontal hydrophobic-hydrophilic carbon nanotube coatings. Appl. Phys. Lett. 102, 161605 (2013).
237. Hendricks, T.J., Krishnan, S., Choi, C., Chang, C-H., and Paul, B.: Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper. Int. J. Heat Mass Transfer 53, 33573365 (2010).
238. Li, S., Furberg, R., Toprak, M.S., Palm, B., and Muhammed, M.: Nature-inspired boiling enhancement by novel nanostructured macroporous surfaces. Adv. Funct. Mater. 18, 22152220 (2008).
239. Furberg, R., Palm, B., Li, S., Toprak, M., and Muhammed, M.: The use of a nano- and microporous surface layer to enhance boiling in a plate heat exchanger. J. Heat Transfer-Trans. ASME 131, 101010 (2009).
240. Ahn, H.S., Jo, H.J., Kang, S.H., and Kim, M.H.: Effect of liquid spreading due to nano/microstructures on the critical heat flux during pool boiling. Appl. Phys. Lett. 98, 071908 (2011).
241. Shen, J., Graber, C., Liburdy, J., Pence, D., and Narayanan, V.: Simultaneous droplet impingement dynamics and heat transfer on nano-structured surfaces. Exp. Therm. Fluid Sci. 34, 496503 (2010).
242. Lee, C.Y., Bhuiya, M.M.H., and Kim, K.J.: Pool boiling heat transfer with nano-porous surface. Int. J. Heat Mass Transfer 53, 42744279 (2010).
243. Sathyamurthi, V., Ahn, H.S., Banerjee, D., and Lau, S.C.: Subcooled pool boiling experiments on horizontal heaters coated with carbon nanotubes. J. Heat Transfer-Trans. ASME 131, 071501 (2009).
244. Kim, H.D. and Kim, M.H.: Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids. Appl. Phys. Lett. 91, 014104 (2007).
245. Chang, J.Y. and You, S.M.: Boiling heat transfer phenomena from micro-porous and porous surfaces in saturated FC-72. Int. J. Heat Mass Transfer 40, 44374447 (1997).
246. Moreno, G., Narumanchi, S., and King, C.: Pool boiling heat transfer characteristics of HFO-1234yf on plain and microporous-enhanced surfaces. J. Heat Transfer 135, 111014 (2013).
247. Feng, B., Weaver, K., and Peterson, G.P.: Enhancement of critical heat flux in pool boiling using atomic layer deposition of alumina. Appl. Phys. Lett. 100, 053120 (2012).
248. Launay, S., Fedorov, A.G., Joshi, Y., Cao, A., and Ajayan, P.M.: Hybrid micro-nano structured thermal interfaces for pool boiling heat transfer enhancement. Microelectron. J. 37, 11581164 (2006).
249. Webb, R.L.: Odyssey of the enhanced boiling surface. ASME Conf. Proc. 2004, 961969 (2004).
250. Liter, S.G. and Kaviany, M.: Pool-boiling CHF enhancement by modulated porous-layer coating: Theory and experiment. Int. J. Heat Mass Transfer 44, 42874311 (2001).
251. Kim, S., Kim, H.D., Kim, H., Ahn, H.S., Jo, H., Kim, J., and Kim, M.H.: Effects of nano-fluid and surfaces with nano structure on the increase of CHF. Exp. Therm. Fluid Sci. 34, 487495 (2010).
252. Nam, Y. and Ju, Y.S.: Bubble nucleation on hydrophobic islands provides evidence to anomalously high contact angles of nanobubbles. Appl. Phys. Lett. 93, 103115 (2008).
253. Suroto, B.J., Tashiro, M., Hirabayashi, S., Hidaka, S., Kohno, M., and Takata, Y.: Effects of hydrophobic-spot periphery and subcooling on nucleate pool boiling from a mixed-wettability surface. J. Therm. Sci. Technol. 8, 294308 (2013).
254. Wang, X., Song, Y., and Wang, H.: An experimental study of bubble formation on a microwire coated with superhydrophobic micropatterns. Heat Transfer Res. 44, 5970 (2013).
255. Bergles, A.E. and Morton, H.L.: Survey and Evaluation of Techniques to Augment Convective Heat Transfer (M.I.T. Dept. of Mechanical Engineering, Cambridge, Mass, 1965).
256. Williams, A.G., Nandapurkar, S.S., and Holland, F.A.: A review of methods for enhancing heat transfer rates in surface condensers. Trans. Inst. Chem. Eng. Chem. Eng. 46, CE367CE373 (1968).
257. Gregorig, R.: Film condensation on finely rippled surfaces with consideration of surface tension. Z. Angew. Math. Phys. 5, 3649 (1954).
258. Bansal, G.D., Khandekar, S., and Muralidhar, K.: Measurement of heat transfer during drop-wise condensation of water on polyethylene. Nanoscale Microscale Thermophys. Eng. 13, 184201 (2009).
259. Enright, R., Miljkovic, N., Alvarado, J.L., Kim, K., and Rose, J.W.: Dropwise condensation on micro- and nanostructured surfaces. Nanoscale Microscale Thermophys. Eng. 18(3), (2014).
260. Miljkovic, N., Enright, R., and Wang, E.N.: Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano 6, 17761785 (2012).
261. Boreyko, J.B. and Collier, C.P.: Dewetting transitions on superhydrophobic surfaces: When are Wenzel drops reversible? J. Phys. Chem. C 117(35), 1808418090 (2013).
262. Haraguchi, T., Shimada, R., Kumagai, S., and Takeyama, T.: The effect of polyvinylidene chloride coating thickness on promotion of dropwise steam condensation. Int. J. Heat Mass Transfer 34, 30473054 (1991).
263. Marto, P.J., Looney, D.J., Rose, J.W., and Wanniarachchi, A.S.: Evaluation of organic coatings for the promotion of dropwise condensation of steam. Int. J. Heat Mass Transfer 29, 11091117 (1986).
264. Vemuri, S. and Kim, K.J.: An experimental and theoretical study on the concept of dropwise condensation. Int. J. Heat Mass Transfer 49, 649657 (2006).
265. Vemuri, S., Kim, K.J., Wood, B.D., Govindaraju, S., and Bell, T.W.: Long term testing for dropwise condensation using self-assembled monolayer coatings of n-octadecyl mercaptan. Appl. Therm. Eng. 26, 421429 (2006).
266. Pang, G.X., Dale, J.D., and Kwok, D.Y.: An integrated study of dropwise condensation heat transfer on self-assembled organic surfaces through Fourier transform infra-red spectroscopy and ellipsometry. Int. J. Heat Mass Transfer 48, 307316 (2005).
267. Yang, Q. and Gu, A.: Dropwise condensation on SAM and electroless composite coating surfaces. J. Chem. Eng. Jpn. 39, 826830 (2006).
268. Yin, L., Wang, Y., Ding, J., Wang, Q., and Chen, Q.: Water condensation on superhydrophobic aluminum surfaces with different low-surface-energy coatings. Appl. Surf. Sci. 258, 40634068 (2012).
269. Sikarwar, B.S., Battoo, N.K., Khandekar, S., and Muralidhar, K.: Dropwise condensation underneath chemically textured surfaces: Simulation and experiments. Journal of Heat Transfer-Trans. ASME 133, 021501 (2011).
270. Izumi, M., Kumagai, S., Shimada, R., and Yamakawa, N.: Heat transfer enhancement of dropwise condensation on a vertical surface with round shaped grooves. Exp. Therm. Fluid Sci. 28, 243248 (2004).
271. Narhe, R.D. and Beysens, D.A.: Water condensation on a super-hydrophobic spike surface. Europhys. Lett. 75, 98104 (2006).
272. Jung, Y.C. and Bhushan, B.: Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces. J. Microsc. 229, 127140 (2008).
273. Enright, R., Miljkovic, N., Al-Obeidi, A., Thompson, C.V., and Wang, E.N.: Condensation on superhydrophobic surfaces: The role of local energy barriers and structure length scale. Langmuir 28, 1442414432 (2012).
274. Rykaczewski, K., Osborn, W.A., Chinn, J., Walker, M.L., Scott, J.H.J., Jones, W., Hao, C.L., Yao, S.H., and Wang, Z.K.: How nanorough is rough enough to make a surface superhydrophobic during water condensation? Soft Matter 8, 87868794 (2012).
275. Wier, K.A. and McCarthy, T.J.: Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: Ultrahydrophobic surfaces are not always water repellant. Langmuir 22, 24332436 (2006).
276. Lafuma, A. and Quere, D.: Superhydrophobic states. Nat. Mater. 2, 457460 (2003).
277. Narhe, R.D. and Beysens, D.A.: Nucleation and growth on a superhydrophobic grooved surface. Phys. Rev. Lett. 93, 076103 (2004).
278. Narhe, R.D. and Beysens, D.A.: Growth dynamics of water drops on a square-pattern rough hydrophobic surface. Langmuir 23, 64866489 (2007).
279. Cheng, Y.T., Rodak, D.E., Angelopoulos, A., and Gacek, T.: Microscopic observations of condensation of water on lotus leaves. Appl. Phys. Lett. 87, 194112 (2005).
280. Lau, K.K.S., Bico, J., Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W.I., McKinley, G.H., and Gleason, K.K.: Superhydrophobic carbon nanotube forests. Nano Lett. 3, 17011705 (2003).
281. Journet, C., Moulinet, S., Ybert, C., Purcell, S.T., and Bocquet, L.: Contact angle measurements on superhydrophobic carbon nanotube forests: Effect of fluid pressure. Europhys. Lett. 71, 104109 (2005).
282. Ma, X.H., Wang, S.F., Lan, Z., Peng, B.L., Ma, H.B., and Cheng, P.: Wetting mode evolution of steam dropwise condensation on superhydrophobic surface in the presence of noncondensable gas. J. Heat Transfer-Trans. ASME 134, 021501 (2012).
283. Lee, S., Cheng, K., Palmre, V., Bhuiya, M.H., Kim, K.J., Zhang, B.J., and Yoon, H.: Heat transfer measurement during dropwise condensation using micro/nano-scale porous surface. Int. J. Heat Mass Transfer 65, 619626 (2013).
284. Tsuruta, T., Tanaka, H., and Togashi, S.: Experimental verification of constriction resistance theory in dropwise condensation heat transfer. Int. J. Heat Mass Transfer 34, 27872796 (1991).
285. Tsuruta, T. and Tanaka, H.: A theoretical study on the constriction resistance in dropwise condensation. Int. J. Heat Mass Transfer 34, 27792786 (1991).
286. Rykaczewski, K.: Microdroplet growth mechanism during water condensation on superhydrophobic surfaces. Langmuir 28, 77207729 (2012).
287. Miljkovic, N., Enright, R., Maroo, S.C., Cho, H.J., and Wang, E.N.: Liquid evaporation on superhydrophobic and superhydrophilic nanostructured surfaces. J. Heat Transfer-Trans. ASME 133, 080903 (2011).
288. Miljkovic, N., Enright, R., Nam, Y., Lopez, K., Dou, N., Sack, J., and Wang, E.N.: Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano Lett. 13, 179187 (2013).
289. Chen, X., Wu, J., Ma, R., Hua, M., Koratkar, N., Yao, S., and Wang, Z.: Nanograssed micropyramidal architectures for continuous dropwise condensation. Adv. Funct. Mater. 21, 46174623 (2011).
290. Cheng, J., Vandadi, A., and Chen, C-L.: Condensation heat transfer on two-tier superhydrophobic surfaces. Appl. Phys. Lett. 101, 131909 (2012).
291. Liu, T., Sun, W., Sun, X., and Ai, H.: Thermodynamic analysis of the effect of the hierarchical architecture of a superhydrophobic surface on a condensed drop state. Langmuir 26, 1483514841 (2010).
292. Liu, T.Q., Sun, W., Sun, X.Y., and Ai, H.R.: Mechanism study of condensed drops jumping on super-hydrophobic surfaces. Colloids Surf., A 414, 366374 (2012).
293. Rykaczewski, K., Paxson, A.T., Anand, S., Chen, X.M., Wang, Z.K., and Varanasit, K.K.: Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces. Langmuir 29, 881891 (2013).
294. Kumar, A. and Whitesides, G.M.: Patterned condensation figures as optical diffraction gratings. Science 263, 6062 (1994).
295. Daniel, S., Chaudhury, M.K., and Chen, J.C.: Fast drop movements resulting from the phase change on a gradient surface. Science 291, 633636 (2001).
296. Derby, M.M., Chatterjee, A., Peles, A., and Jensen, M.K.: Flow condensation heat transfer enhancement in a mini-channel with hydrophobic and hydrophilic patterns. Int. J. Heat Mass Transfer 68, 151160 (2014).
297. Xiao, R., Miljkovic, N., Enright, R., and Wang, E.: Immersion condensation on oil-infused heterogeneous surface for enhanced heat transfer. Sci. Rep. 3, 1988 (2013).
298. Yao, C.W., Garvin, T.P., Alvarado, J.L., Jacobi, A.M., Jones, B.G., and Marsh, C.P.: Droplet contact angle behavior on a hybrid surface with hydrophobic and hydrophilic properties. Appl. Phys. Lett. 101, 111605 (2012).
299. Croutch, V.K. and Hartley, R.A.: Adhesion of ice to coatings and the performance of ice release coatings. J. Coat. Technol. 64, 4153 (1992).
300. Somlo, B. and Gupta, V.: A hydrophobic self-assembled monolayer with improved adhesion to aluminum for deicing application. Mech. Mater. 33, 471480 (2001).
301. Li, K., Xu, S., Shi, W., He, M., Li, H., Li, S., Zhou, X., Wang, J., and Song, Y.: Investigating the effects of solid surfaces on ice nucleation. Langmuir 28, 1074910754 (2012).
302. Saito, H., Takai, K., and Yamauchi, G.: Water- and ice-repellent coatings. JOCCA-Surf. Coat. Int. 80, 168171 (1997).
303. Charpentier, T.V., Neville, A., Millner, P., Hewson, R.W., and Morina, A.: Development of anti-icing materials by chemical tailoring of hydrophobic textured metallic surfaces. J. Colloid Interface Sci. 394, 539544 (2013).
304. Arianpour, F., Farzaneh, M., and Kulinich, S.A.: Hydrophobic and ice-retarding properties of doped silicone rubber coatings. Appl. Surf. Sci. 265, 546552 (2013).
305. Boreyko, J.B. and Collier, C.P.: Delayed frost growth on jumping-drop superhydrophobic surfaces. ACS Nano 7, 16181627 (2013).
306. Zhang, Q., He, M., Chen, J., Wang, J., Song, Y., and Jiang, L.: Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets. Chem. Commun. 49, 45164518 (2013).
307. He, M., Wang, J., Li, H., and Song, Y.: Super-hydrophobic surfaces to condensed micro-droplets at temperatures below the freezing point retard ice/frost formation. Soft Matter 7, 3993 (2011).
308. Zhang, Q., He, M., Zeng, X., Li, K., Cui, D., Chen, J., Wang, J., Song, Y., and Jiang, L.: Condensation mode determines the freezing of condensed water on solid surfaces. Soft Matter 8, 8285 (2012).
309. Yin, L., Xia, Q., Xue, J., Yang, S., Wang, Q., and Chen, Q.: In situ investigation of ice formation on surfaces with representative wettability. Appl. Surf. Sci. 256, 67646769 (2010).
310. Guo, P., Zheng, Y., Wen, M., Song, C., Lin, Y., and Jiang, L.: Icephobic/anti-icing properties of micro/nanostructured surfaces. Adv. Mater. 24, 26422648 (2012).
311. Boinovich, L.B., Zhevnenko, S.N., Emel’yanenko, A.M., Gol’dshtein, R.V., and Epifanov, V.P.: Adhesive strength of the contact of ice with a superhydrophobic coating. Dokl. Chem. 448, 7175 (2013).
312. Jafari, R., Menini, R., and Farzaneh, M.: Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings. Appl. Surf. Sci. 257, 15401543 (2010).
313. Kulinich, S.A. and Farzaneh, M.: Ice adhesion on super-hydrophobic surfaces. Appl. Surf. Sci. 255, 81538157 (2009).
314. Menini, R. and Farzaneh, M.: Elaboration of Al2O3/PTFE icephobic coatings for protecting aluminum surfaces. Surf. Coat. Technol. 203, 19411946 (2009).
315. Sarkar, D.K. and Farzaneh, M.: Superhydrophobic coatings with reduced ice adhesion. J. Adhes. Sci. Technol. 23, 12151237 (2009).
316. Saleema, N., Farzaneh, M., Paynter, R.W., and Sarkar, D.K.: Prevention of ice accretion on aluminum surfaces by enhancing their hydrophobic properties. J. Adhes. Sci. Technol. 25, 2740 (2011).
317. Kulinich, S.A. and Farzaneh, M.: How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces. Langmuir 25, 88548856 (2009).
318. Nosonovsky, M. and Hejazi, V.: Why superhydrophobic surfaces are not always icephobic. ACS Nano 6, 84888491 (2012).
319. Meuler, A.J., Smith, J.D., Varanasi, K.K., Mabry, J.M., McKinley, G.H., and Cohen, R.E.: Relationships between water wettability and ice adhesion. ACS Appl. Mater. Interfaces 2, 31003110 (2010).
320. Kulinich, S.A., Farhadi, S., Nose, K., and Du, X.W.: Superhydrophobic surfaces: Are they really ice-repellent? Langmuir 27, 2529 (2011).
321. Yang, S., Xia, Q., Zhu, L., Xue, J., Wang, Q., and Chen, Q-M.: Research on the icephobic properties of fluoropolymer-based materials. Appl. Surf. Sci. 257, 49564962 (2011).
322. Shirtcliffe, N.J., McHale, G., and Newton, M.I.: The superhydrophobicity of polymer surfaces: Recent developments. J. Polym. Sci. Part B: Polym. Phys. 49, 12031217 (2011).
323. Peng, C., Xing, S., Yuan, Z., Xiao, J., Wang, C., and Zeng, J.: Preparation and anti-icing of superhydrophobic PVDF coating on a wind turbine blade. Appl. Surf. Sci. 259, 764768 (2012).
324. Jing, T., Kim, Y., Lee, S., Kim, D., Kim, J., and Hwang, W.: Frosting and defrosting on rigid superhydrophobic surface. Appl. Surf. Sci. 276, 3742 (2013).
325. Meuler, A.J., McKinley, G.H., and Cohen, R.E.: Exploiting topographical texture to impart icephobicity. ACS Nano 4, 70487052 (2010).
326. Wang, F., Li, C., Lv, Y., Lv, F., and Du, Y.: Ice accretion on superhydrophobic aluminum surfaces under low-temperature conditions. Cold Reg. Sci. Technol. 62, 2933 (2010).
327. Bahadur, V., Mishchenko, L., Hatton, B., Taylor, J.A., Aizenberg, J., and Krupenkin, T.: Predictive model for ice formation on superhydrophobic surfaces. Langmuir 27, 1414314150 (2011).
328. Sarshar, M.A., Swarctz, C., Hunter, S., Simpson, J., and Choi, C-H.: Effects of contact angle hysteresis on ice adhesion and growth on superhydrophobic surfaces under dynamic flow conditions. Colloid Polym. Sci. 291, 427435 (2012).
329. Alizadeh, A., Yamada, M., Li, R., Shang, W., Otta, S., Zhong, S., Ge, L., Dhinojwala, A., Conway, K.R., Bahadur, V., Vinciquerra, A.J., Stephens, B., and Blohm, M.L.: Dynamics of ice nucleation on water repellent surfaces. Langmuir 28, 31803186 (2012).
330. Antonini, C., Innocenti, M., Horn, T., Marengo, M., and Amirfazli, A.: Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems. Cold Reg. Sci. Technol. 67, 5867 (2011).
331. Xiao, J. and Chaudhuri, S.: Design of anti-icing coatings using supercooled droplets as nano-to-microscale probes. Langmuir 28, 44344446 (2012).
332. Gorbunov, B., Baklanov, A., Kakutkina, N., Windsor, H.L., and Toumi, R.: Ice nucleation on soot particles. J. Aerosol Sci. 32, 199215 (2001).
333. Maitra, T., Tiwari, M.K., Antonini, C., Schoch, P., Jung, S., Eberle, P., and Poulikakos, D.: On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature. Nano Lett. 14, 172182 (2014).
334. Bird, J.C., Dhiman, R., Kwon, H.M., and Varanasi, K.K.: Reducing the contact time of a bouncing drop. Nature 503, 385388 (2013).
335. Zhang, Y., Yu, X., Wu, H., and Wu, J.: Facile fabrication of superhydrophobic nanostructures on aluminum foils with controlled-condensation and delayed-icing effects. Appl. Surf. Sci. 258, 82538257 (2012).
336. Wilson, P.W., Lu, W., Xu, H., Kim, P., Kreder, M.J., Alvarenga, J., and Aizenberg, J.: Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS). Phys. Chem. Chem. Phys. 15, 581585 (2013).
337. Rykaczewski, K., Anand, S., Subramanyam, S.B., and Varanasi, K.K.: Mechanism of frost formation on lubricant-impregnated surfaces. Langmuir 29, 52305238 (2013).
338. Lee, H., Alcaraz, M.L., Rubner, M.F., and Cohen, R.E.: Zwitter-wettability and antifogging coatings with frost-resisting capabilities. ACS Nano 7, 21722185 (2013).
339. Annual Energy Review 2011, U.S. Energy Information Administration, 2012.
340. Linnhoff, B.: A User Guide on Process Integration for the Efficient Use of Energy (Institution of Chemical Engineers, Great Britain, 1994).
341. Marlino, L.D.: Technology and Cost of the MY2007 Toyota Camry HEV - Final Report Oak Ridge National Laboratory, 2007.
342. Moreno, G.: Section 5.7 Two-phase cooling technology for power electronics with novel coolants. In Advanced Power Electronics and Electric Motors Annual Progress Report, FY 2011, U.S. Department of Energy Office of Vehicle Technologies, 2012.
343. Thevenin, R., Wu, Z., Keller, P., Cohen, R., Clanet, C., and Quere, D.: New Thermal-Sensitive Superhydrophobic Material (Pittsburgh, PA, 2013).
344. Yi, P., Khoshmanesh, K., Chrimes, A.F., Campbell, J.L., Ghorbani, K., Nahavandi, S., Rosengarten, G., and Kalantar-zadeh, K.: Dynamic nanofin heat sinks. Adv. Energy Mater. 4, n/a-n/a (2014).
345. Agbaglah, G., Delaux, S., Fuster, D., Hoepffner, J., Josserand, C., Popinet, S., Ray, P., Scardovelli, R., and Zaleski, S.: Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method. C. R. Mécanique 339, 194207 (2011).
346. Raj, R., Kunkelmann, C., Stephan, P., Plawsky, J., and Kim, J.: Contact line behavior for a highly wetting fluid under superheated conditions. Int. J. Heat Mass Transfer 55, 26642675 (2012).
347. Koumoutsakos, P.: Multiscale flow simulations using particles. Annu. Rev. Fluid Mech. 37, 457487 (2005).
348. Kim, J.: Review of nucleate pool boiling bubble heat transfer mechanisms. Int. J. Multiphase Flow 35, 10671076 (2009).
349. Law, K-Y.: Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: Getting the basics right. J. Phys. Chem. Lett. 5, 686688 (2014).
350. Rykaczewski, K., Paxson, A.T., Staymates, M., Walker, M.L., Sun, X., Anand, S., Srinivasan, S., McKinley, G.H., Chinn, J., Scott, J.H.J., and Varanasi, K.K.: Dropwise condensation of low surface tension fluids on omniphobic surfaces. Sci. Rep. 4, 4158 (4151–4158) (2014).
351. Farhadi, S., Farzaneh, M., and Kulinich, S.A.: Anti-icing performance of superhydrophobic surfaces. Appl. Surf. Sci. 257, 62646269 (2011).
352. Wang, Y., Xue, J., Wang, Q., Chen, Q., and Ding, J.: Verification of icephobic/anti-icing properties of a superhydrophobic surface. ACS Appl. Mater. Interfaces 5, 33703381 (2013).
353. Zhang, X., Kono, H., Liu, Z., Nishimoto, S., Tryk, D.A., Murakami, T., Sakai, H., Abe, M., and Fujishima, A.: A transparent and photo-patternable superhydrophobic film. Chem. Commun. 46, 49494951 (2007).
354. Zhang, M., Efremov, M.Y., Schiettekatte, F., Olson, E.A., Kwan, A.T., Lai, S.L., Wisleder, T., Greene, J.E., and Allen, L.H.: Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements. Phys. Rev. B 62, 1054810557 (2000).
355. Bott, T.R.: Fouling of Heat Exchangers (Elsevier, New York, 1995).
356. Humplik, T., Lee, J., O'Hern, S.C., Fellman, B.A., Baig, M.A., Hassan, S.F., Atieh, M.A., Rahman, F., Laoui, T., Karnik, R., and Wang, E.N.: Nanostructured materials for water desalination. Nanotechnol. 22, 292001 (2011).
357. Choi, C-H. and Kim, C-J.: Green Tribology – Biomimetics, Energy Conservation, and Sustainability, Nosonovsky, M. and Bhushan, B. eds.; Springer: Heidelberg, Germany, 2012; pp. 79104.
358. Heo, S.Y., Koh, J.K., Kang, G., Ahn, S.H., Chi, W.S., Kim, K., and Kim, J.H.: Bifunctional moth-eye nanopatterned dye-sensitized solar cells: Light-harvesting and self-cleaning effects. Adv. Energy Mater. 4, n/a-n/a (2014).
359. Thome, J.R.: Enhanced Boiling Heat Transfer (Hemisphere Publishing Corporation, New York, 1989).
360. Thome, J.R.: Enhanced boiling of mixtures. Chem. Eng. Sci. 42, 19091917 (1987).
361. Scardino, A.J. and de Nys, R.: Mini review: Biomimetic models and bioinspired surfaces for fouling control. Biofouling 27, 7386 (2011).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Energy & Sustainability
  • ISSN: 2329-2229
  • EISSN: 2329-2237
  • URL: /core/journals/mrs-energy-and-sustainability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views