Skip to main content Accessibility help
×
×
Home

EXCHANGE MOVES AND NONCONJUGATE BRAID REPRESENTATIVES OF KNOTS

  • REIKO SHINJO (a1) and ALEXANDER STOIMENOW (a2)

Abstract

We prove that for $n\geqslant 4$ , every knot has infinitely many conjugacy classes of $n$ -braid representatives if and only if it has one admitting an exchange move.

Copyright

References

Hide All
[1] Alexander, J. W., A lemma on systems of knotted curves , Proc. Natl. Acad. Sci. USA 9 (1923), 9395.
[2] Artin, E., Theory of braids , Ann. of Math. (2) 48 (1947), 101126.
[3] Birman, J. S., Non conjugate braids can define isotopic knots , Comm. Pure Appl. Math. 22 (1969), 239242.
[4] Birman, J. S. and Menasco, W. W., Studying links via closed braids VI. A nonfiniteness theorem , Pacific J. Math. 156(2) (1992), 265285.
[5] Birman, J. S. and Menasco, W. W., Studying links via closed braids III. Classifying links which are closed 3-braids , Pacific J. Math. 161(1) (1993), 25113.
[6] Burde, G. and Zieschang, H., Knots, de Gruyter, Berlin, 1986.
[7] Fukunaga, E., Infinite sequences of braids representing a single link type, “Topology of Knots V”, Waseda University, proceedings (2002).
[8] Fukunaga, E., An infinite sequence of conjugacy classes in the $4$ -braid group representing a torus link of type (2, k), Preprint.
[9] Garside, F., The braid group and other groups , Q. J. Math. Oxford 20 (1969), 235264.
[10] Hoste, J., The first coefficient of the Conway polynomial , Proc. Amer. Math. Soc. 95(2) (1985), 299302.
[11] Jones, V. F. R., Hecke algebra representations of braid groups and link polynomials , Ann. of Math. (2) 126 (1987), 335388.
[12] Kawauchi, A., A survey of Knot Theory, Birkhäuser, Basel-Boston-Berlin, 1991.
[13] Morton, H. R., Infinitely many fibred knots having the same Alexander polynomial , Topology 17(1) (1978), 101104.
[14] Morton, H. R., Threading knot diagrams , Math. Proc. Camb. Philos. Soc. 99 (1986), 247260.
[15] Murakami, H. and Nakanishi, Y., On a certain move generating link-homology , Math. Ann. 284 (1989), 7589.
[16] Murasugi, K. and Thomas, R. S. D., Isotopic closed nonconjugate braids , Proc. Amer. Math. Soc. 33 (1972), 137139.
[17] Rolfsen, D., Knots and Lnks, Publish or Perish, 1976.
[18] Shinjo, R., “ An infinite sequence of non-conjugate 4-braids representing the same knot of braid index 4 ”, Intelligence of Low Dimensional Topology 2006, Ser. Knots Everything, 40, 293297. World Sci. Publ., 2007.
[19] Shinjo, R., Non-conjugate braids whose closures result in the same knot , J. Knot Theory Ramifications 19(1) (2010), 117124.
[20] Shinjo, R. and Stoimenow, A., Infinitely many non-conjugate braid representatives of links, to appear.
[21] Stoimenow, A., On non-conjugate braids with the same closure link , J. Geometry 96(1) (2010), 179186.
[22] Stoimenow, A., Non-conjugate braids with the same closure link from density of representations , J. Math. Pures Appl. 94(5) (2010), 470496.
[23] Stoimenow, A., Tabulating and distinguishing mutants , Internat. J. Algebra Comput. 20(4) (2010), 525559.
[24] Stoimenow, A., Knot data tables, http://stoimenov.net/stoimeno/homepage/ptab/braid.out.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Nagoya Mathematical Journal
  • ISSN: 0027-7630
  • EISSN: 2152-6842
  • URL: /core/journals/nagoya-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed