[1]
Àlvarez Montaner, J. and Vahidi, A.,
*Lyubeznik numbers of monomial ideals*
, Trans. Amer. Math. Soc.
366 (2014), 1829–1855.

[2]
Àlvarez Montaner, J.,
*Lyubeznik table of sequentially Cohen–Macaulay rings*
, Comm. Algebra
43 (2015), 3695–3704.

[3]
Björk, J. E., Rings of Differential Operators, North-Holland Mathematics Library, Amsterdam, 1979.

[4]
Blickle, M.,
*Lyubeznik’s numbers for cohomologically isolated singularities*
, J. Algebra
308 (2007), 118–123.

[5]
Blickle, M. and Bondu, R.,
*Local cohomology multiplicities in terms of étale cohomology*
, Ann. Inst. Fourier
55 (2005), 2239–2256.

[6]
García López, R. and Sabbah, C.,
*Topological computation of local cohomology multiplicities*
, Collect. Math.
49 (1998), 317–324.

[7]
Helm, D. and Miller, E.,
*Bass numbers of semigroup-graded local cohomology*
, Pacific J. Math.
209 (2003), 41–66.

[8]
Herzog, J. and Hibi, T.,
*Componentwise linear ideals*
, Nagoya Math. J.
153 (1999), 141–153.

[9]
Herzog, J., Takayama, Y. and Terai, N.,
*On the radical of a monomial ideal*
, Arch. Math.
85 (2005), 397–408.

[10]
Huneke, C. and Sharp, R. Y.,
*Bass numbers of local cohomology modules*
, Trans. Amer. Math. Soc.
339 (1993), 765–779.

[11]
Jacques, S. and Katzman, M., *The Betti numbers of forests*, preprint, 2005, available at arXiv:0501226. [12]
Kawasaki, K. I.,
*On the Lyubeznik number of local cohomology modules*
, Bull. Nara Univ. Ed. Natur. Sci.
49 (2000), 5–7.

[13]
Lyubeznik, G.,
*Finiteness properties of local cohomology modules (an application of **D*-modules to commutative algebra)
, Invent. Math.
113 (1993), 41–55.

[14]
Lyubeznik, G.,
*
**F*-modules: applications to local cohomology and *D*-modules in characteristic *p* > 0
, J. Reine Angew. Math.
491 (1997), 65–130.

[15]
Lyubeznik, G.,
*On some local cohomology invariants of local rings*
, Math. Z.
254 (2006), 627–640.

[16]
Mahmood, W. and Schenzel, P.,
*On invariants and endomorphism rings of certain local cohomology modules*
, J. Algebra
372 (2012), 56–67.

[17]
Miller, E.,
*The Alexander duality functors and local duality with monomial support*
, J. Algebra
231 (2000), 180–234.

[18]
Mustaţă, M.,
*Local cohomology at monomial ideals*
, J. Symbolic Comput.
29 (2000), 709–720.

[19]
Okazaki, R. and Yanagawa, K.,
*Linearity defects of face rings*
, J. Algebra
314 (2007), 362–382.

[20]
Römer, T., *On minimal graded free resolutions*, Ph.D. Thesis, Essen, 2001.

[21]
Schenzel, P.,
*On the structure of the endomorphism ring of a certain local cohomology module*
, J. Algebra
344 (2011), 229–245.

[22]
Stanley, R. P., Combinatorics and Commutative Algebra, 2nd ed., Progress in Mathematics, **41**
, Birkhäuser, Boston, MA, 1996.

[23]
Terai, N., *Local cohomology modules with respect to monomial ideals*, preprint, 1999.

[24]
Walther, U.,
*On the Lyubeznik numbers of a local ring*
, Proc. Amer. Math. Soc.
129 (2001), 1631–1634.

[25]
Yanagawa, K.,
*Alexander duality for Stanley–Reisner rings and squarefree ℕ*^{
n
}-graded modules
, J. Algebra
225 (2000), 630–645.

[26]
Yanagawa, K.,
*Bass numbers of local cohomology modules with supports in monomial ideals*
, Math. Proc. Cambridge Philos. Soc.
131 (2001), 45–60.

[27]
Yanagawa, K.,
*Sheaves on finite posets and modules over normal semigroup rings*
, J. Pure Appl. Algebra
161 (2001), 341–366.

[28]
Yanagawa, K.,
*Stanley–Reisner rings, sheaves, and Poincaré–Verdier duality*
, Math. Res. Lett.
10 (2003), 635–650.

[29]
Yanagawa, K.,
*Derived category of squarefree modules and local cohomology with monomial ideal support*
, J. Math. Soc. Japan
56 (2004), 289–308.

[30]
Yanagawa, K.,
*Notes on **C*-graded modules over an affine semigroup ring *K*[*C*]
, Comm. Algebra
36 (2008), 3122–3146.

[31]
Zhang, W.,
*On the highest Lyubeznik number of a local ring*
, Compos. Math.
143 (2007), 82–88.