Hostname: page-component-cd4964975-pf4mj Total loading time: 0 Render date: 2023-03-28T00:00:17.355Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Bedrock geological map predictions for Phanerozoic fossil occurrences

Published online by Cambridge University Press:  27 January 2023

Shan Ye*
Affiliation:
Department of Geoscience, University of Wisconsin–Madison, Madison, Wisconsin 53706, U.S.A. E-mail: shan.ye@wisc.edu, peters@geology.wisc.edu
Shanan E. Peters
Affiliation:
Department of Geoscience, University of Wisconsin–Madison, Madison, Wisconsin 53706, U.S.A. E-mail: shan.ye@wisc.edu, peters@geology.wisc.edu
*
*Corresponding author.

Abstract

Geographically explicit, taxonomically resolved fossil occurrences are necessary for reconstructing macroevolutionary patterns and for testing a wide range of hypotheses in the Earth and life sciences. Heterogeneity in the spatial and temporal distribution of fossil occurrences in the Paleobiology Database (PBDB) is attributable to several different factors, including turnover among biological communities, socioeconomic disparities in the intensity of paleontological research, and geological controls on the distribution and fossil yield of sedimentary deposits. Here we use the intersection of global geological map data from Macrostrat and fossil collections in the PBDB to assess the extent to which the potentially fossil-bearing, surface-expressed sedimentary record has yielded fossil occurrences. We find a significant and moderately strong positive correlation between geological map area and the number of fossil occurrences. This correlation is consistent regardless of map unit age and binning protocol, except at period level; the Neogene and Quaternary have non-marine map units covering large areas and yielding fewer occurrences than expected. The sedimentary record of North America and Europe yields significantly more fossil occurrences per sedimentary area than similarly aged deposits in most of the rest of the world. However, geographic differences in area and age of sedimentary deposits lead to regionally different expectations for fossil occurrences. Using the sampling of surface-expressed sedimentary units in North America and Europe as a predictor for what might be recoverable from the surface-expressed sedimentary deposits of other regions, we find that the rest of the globe is approximately 45% as well sampled in the PBDB. Using age and area of bedrock and sampling in North America and Europe as a basis for prediction, we estimate that more than 639,000 occurrences from outside these regions would need to be added to the PBDB to achieve global geological parity in sampling. In general, new terrestrial fossil occurrences are expected to have the greatest impact on our understanding of macroevolutionary patterns.

Type
Articles
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 2010. The shifting balance of diversity among major marine animal groups. Science 329:11911194.CrossRefGoogle ScholarPubMed
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J., Sommers, M. G., Wagner, P. J., and Webber, A.. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.CrossRefGoogle ScholarPubMed
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Franz, F. T., Harries, P. J., Hendy, A. J., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Loïc, V., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Sabine, N., Powers, C. M., Sessa, J. A., Simpson, C., Adam, T., and Visaggi, C. C.. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.CrossRefGoogle ScholarPubMed
Amano, T., and Sutherland, W. J.. 2013. Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security. Proceedings of the Royal Society of London B 280:20122649.Google Scholar
Asch, K. 2003. The 1:5 million international geological map of Europe and adjacent areas. Schweizerbart, Stuttgart.Google Scholar
Ausich, W. I. 1999. Upper Ordovician of the Cincinnati, Ohio, area, USA. Pp. 7580 in Hess, H., Ausich, W. I., Brett, C. E., and Simms, M. J., eds. Fossil crinoids. Cambridge University Press, New York.CrossRefGoogle Scholar
Benton, M. J., and Emerson, B. C.. 2007. How did life become so diverse? The dynamics of diversification according to the fossil record and molecular phylogenetics. Palaeontology 50:2340.CrossRefGoogle Scholar
Benton, M. J., Dunhill, A. M., Lloyd, G. T., and Marx, F. G.. 2011. Assessing the quality of the fossil record: insights from vertebrates. Geological Society of London Special Publication 358:6394.CrossRefGoogle Scholar
Benton, M. J., Ruta, M., Dunhill, A. M., and Sakamoto, M.. 2013. The first half of tetrapod evolution, sampling proxies, and fossil record quality. Palaeogeography, Palaeoclimatology, Palaeoecology 372:1841.CrossRefGoogle Scholar
Berry, J. P., and Wilkinson, B. H.. 1994. Paleoclimatic and tectonic control on the accumulation of North American cratonic sediment. Geological Society of America Bulletin 106:855865.2.3.CO;2>CrossRefGoogle Scholar
Broussard, D. R., Trop, J. M., Benowitz, J. A., Daeschler, E. B., Chamberlain, J. A., and Chamberlain, R. B.. 2018. Depositional setting, taphonomy and geochronology of new fossil sites in the Catskill Formation (Upper Devonian) of north-central Pennsylvania, USA, including a new early tetrapod fossil. Palaeogeography, Palaeoclimatology, Palaeoecology 511:168187.CrossRefGoogle Scholar
Brown, C. M., Evans, D. C., Campione, N. E., O'Brien, L. J., and Eberth, D. A.. 2013. Evidence for taphonomic size bias in the Dinosaur Park Formation (Campanian, Alberta), a model Mesozoic terrestrial alluvial-paralic system. Palaeogeography, Palaeoclimatology, Palaeoecology 372:108122.CrossRefGoogle Scholar
Buchheim, H. P. 1994. Eocene Fossil Lake, Green River Formation, Wyoming: a history of fluctuating salinity. In Renaut, R. W. and Last, W. M., eds. Sedimentology and geochemistry of modern and ancient saline lakes. SEPM Special Publication 50:239247.CrossRefGoogle Scholar
Bush, A. M., Hunt, G., and Bambach, R. K.. 2016. Sex and the shifting biodiversity dynamics of marine animals in deep time. Proceedings of the National Academy of Sciences USA 113:1407314078.CrossRefGoogle ScholarPubMed
Butler, R. J., Benson, R. B., Carrano, M. T., Mannion, P. D., and Upchurch, P.. 2011. Sea level, dinosaur diversity and sampling biases: investigating the “Common Cause” hypothesis in the terrestrial realm. Proceedings of the Royal Society of London B 278:11651170.Google ScholarPubMed
Chiarenza, A. A., Farnsworth, A., Mannion, P. D., Lunt, D. J., Valdes, P. J., Morgan, J. V., and Allison, P. A.. 2020. Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction. Proceedings of the National Academy of Sciences USA 117:1708417093.CrossRefGoogle Scholar
Crampton, J. S., Beu, A. G., Cooper, R. A., Jones, C. M., Marshall, B., and Maxwell, P.. 2003. Estimating the rock volume bias in paleobiodiversity studies. Science 301:358360.CrossRefGoogle ScholarPubMed
Cutbill, J. L., and Funnell, B. M.. 1967. Numerical analysis of the fossil record. Geological Society of London Special Publication 2:791820.CrossRefGoogle Scholar
Darwin, C. 1859. On the origin of species. PF Collier & Son, New York.Google Scholar
Dunhill, A. M., Hannisdal, B., and Benton, M. J.. 2014. Disentangling rock record bias and common-cause from redundancy in the British fossil record. Nature Communications 5:19.CrossRefGoogle ScholarPubMed
Eugster, H. P., and Surdam, R. C.. 1973. Depositional environment of the Green River Formation of Wyoming: a preliminary report. Geological Society of America Bulletin 84:1115.2.0.CO;2>CrossRefGoogle Scholar
Finnegan, S., Anderson, S. C., Harnik, P. G., Simpson, C., Tittensor, D. P., Byrnes, J. E., Finkel, Z. V., Lindberg, D. R., Liow, L. H., Lockwood, R., Lotze, H. K., McClain, C. R., McGuire, J. L., O'Dea, A., and Pandolfi, J. M.. 2015. Paleontological baselines for evaluating extinction risk in the modern oceans. Science 348:567570.CrossRefGoogle ScholarPubMed
Foote, M. 2000. Origination and extinction components of taxonomic diversity: general problems. Paleobiology 26:74102.CrossRefGoogle Scholar
Garrity, C. P., and Soller, D.. 2009. Database of the geologic map of North America—adapted from the map by J.C. Reed, Jr. and others (2005). U.S. Geological Survey Data Series 424. https://pubs.usgs.gov/ds/424, accessed 25 December 2022.Google Scholar
Gómez, J., Schobbenhaus, C., and Montes, N.E., compilers. 2019. Geological map of South America 2018. Scale 1:5,000,000. Commission for the Geological Map of the World (CGMW), Colombian Geological Survey and Geological Survey of Brazil, Paris.Google Scholar
Hannisdal, B., and Peters, S. E.. 2011. Phanerozoic Earth system evolution and marine biodiversity. Science 334:11211124.CrossRefGoogle ScholarPubMed
Harris, F., Alley, H., Fine, R., and Deline, B.. 2019. Rare colonial corals from the Upper Ordovician Kope Formation of Kentucky and their role in ephemeral invasions in the Edenian. Palaeogeography, Palaeoclimatology, Palaeoecology 533:109279.CrossRefGoogle Scholar
Harrison, J. C., St-Onge, M. R., Petrov, O., Strelnikov, S., Lopatin, B., Wilson, F., Tella, S., Paul, D., Lynds, T., Shokalsky, S., and Hults, C.. 2008. Geological map of the Arctic. Geological Survey of Canada Open File 5816.Google Scholar
Heim, N. A., and Peters, S. E.. 2010. Covariation in macrostratigraphic and macroevolutionary patterns in the marine record of North America. Geological Society of America Bulletin 123:620630.CrossRefGoogle Scholar
Heim, N. A., and Peters, S. E.. 2011. Regional environmental breadth predicts geographic range and longevity in fossil marine genera. PLoS ONE 6:5-e18946.CrossRefGoogle ScholarPubMed
Holland, S. M. 2000. The quality of the fossil record: a sequence stratigraphic perspective. Paleobiology 26:148168.CrossRefGoogle Scholar
Hou, H. 1986. The Famennian regression in South China. Annales de la Societe geologique de Belgique 109:137140.Google Scholar
Hughes, A., Orr, M., Ma, K., Costello, M., Waller, J., Provoost, P., Zhu, C., and Qiao, H.. 2021. Sampling biases shape our view of the natural world. Ecography 44:12591269.CrossRefGoogle Scholar
Huxley, T. 1862. In correspondence with Charles Darwin. Cambridge University Library, Cambridge, UKGoogle Scholar
International Monetary Fund. 2022. World economic outlook database, April 2022. https://www.imf.org/en/Publications/WEO/weo-database/2022/April, accessed 23 June 2022.Google Scholar
Johnson, R., Birdwell, J., Mercier, T. J., and Brownfield, M. E.. 2016. Geology of tight oil and potential tight oil reservoirs in the lower part of the Green River Formation, Uinta, Piceance, and Greater Green River Basins, Utah, Colorado, and Wyoming. Geological Survey Scientific Investigations Report 2016–5008. doi: 10.3133/sir20165008.CrossRefGoogle Scholar
Kiessling, W. 2005. Habitat effects and sampling bias on Phanerozoic Reef Distribution. Facies 51:2432.CrossRefGoogle Scholar
Kindler, A. M., and Darras, B.. 1997. Young children and museums: the role of cultural context in early development of attitudes, beliefs, and behaviors. Visual Arts Research 32:1.Google Scholar
Klompmaker, A. A., Kowalewski, M., Huntley, J. W., and Finnegan, S.. 2017. Increase in predator-prey size ratios throughout the Phanerozoic history of marine ecosystems. Science 356:11781180.CrossRefGoogle ScholarPubMed
Lin, W., Wang, X., Edouard, P. O., and Aretz, M.. 2012. Late Viséan to early Serpukhovian rugose corals from the Yashui section, Guizhou, South China. Geologica Belgica 15:329339.Google Scholar
Lloyd, G. T., Smith, A. B., and Young, J. R.. 2011. Quantifying the deep-sea rock and fossil record bias using coccolithophores. Geological Society of London Special Publication 358:167177.CrossRefGoogle Scholar
Loughney, K. M., Badgley, C., Bahadori, A., Hold, W. E., and Rasbury, E. T.. 2021. Tectonic influence on Cenozoic mammal richness and sedimentation history of the Basin and Range, western North America. Science Advances 7(45):p.eabh4470.CrossRefGoogle ScholarPubMed
McGowan, A. J., and Smith, A. B.. 2008. Are global Phanerozoic marine diversity curves truly global? A study of the relationship between regional rock records and global Phanerozoic marine diversity. Paleobiology 34:80103.CrossRefGoogle Scholar
Meyers, S. R., and Peters, S. E.. 2011. A 56 million year rhythm in North American sedimentation during the Phanerozoic. Earth and Planetary Science Letters 303:174180.CrossRefGoogle Scholar
Miller, A. I. 2000. Conversations about Phanerozoic global diversity. Paleobiology 26:5373.CrossRefGoogle Scholar
Newell, N. D. 1952. Periodicity in invertebrate evolution. Journal of Paleontology 26:371385.Google Scholar
Newell, N. D. 1956. Catastrophism and the fossil record. Evolution 10:97.CrossRefGoogle Scholar
Newell, N. D. 1959. The nature of the fossil record. Proceedings of the American Philosophical Society 103:264285.Google Scholar
Newell, N. D. 1962. Paleontological gaps and geochronology. Journal of Paleontology 36:592610.Google Scholar
Newell, N. D. 1963. Crises in the history of life. Scientific American 208:7695.CrossRefGoogle Scholar
Peng, S., and Robison, R. A.. 2000. Agnostoid biostratigraphy across the middle–upper Cambrian boundary in Hunan, China. Journal of Paleontology 74:1104.CrossRefGoogle Scholar
Peters, S. E. 2005. Geologic constraints on the macroevolutionary history of marine animals. Proceedings of the National Academy of Sciences USA 102:1232612331.CrossRefGoogle ScholarPubMed
Peters, S. E. 2006a. Genus extinction, origination, and the durations of sedimentary hiatuses. Paleobiology 32:387407.CrossRefGoogle Scholar
Peters, S. E. 2006b. Macrostratigraphy of North America. Journal of Geology 114:391412.CrossRefGoogle Scholar
Peters, S. E. 2007. The problem with the Paleozoic. Paleobiology 33:165181.CrossRefGoogle Scholar
Peters, S. E., and Ausich, W. I.. 2008. A sampling-adjusted macroevolutionary history for Ordovician–early Silurian crinoids. Paleobiology 34:104116.CrossRefGoogle Scholar
Peters, S. E., and Foote, M.. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583601.2.0.CO;2>CrossRefGoogle Scholar
Peters, S. E., and Foote, M.. 2002. Determinants of extinction in the fossil record. Nature 416:420424.CrossRefGoogle ScholarPubMed
Peters, S. E., and Heim, N. A.. 2010. The geological completeness of paleontological sampling in North America. Paleobiology 36:6179.CrossRefGoogle Scholar
Peters, S. E., and Heim, N. A.. 2011. Macrostratigraphy and macroevolution in marine environments: testing the common-cause hypothesis. Geological Society of London Special Publication 358:95104.CrossRefGoogle Scholar
Peters, S. E., and Husson, J. M.. 2017. Sediment cycling on continental and oceanic crust. Geology 45:323326.CrossRefGoogle Scholar
Peters, S. E., and McClennen, M.. 2016. The Paleobiology Database application programming interface. Paleobiology 42:17.CrossRefGoogle Scholar
Peters, S. E., Husson, J. M., and Czaplewski, J.. 2018. Macrostrat: a platform for geological data integration and deep-time Earth crust research. Geochemistry, Geophysics, Geosystems 19:13931409.CrossRefGoogle Scholar
Phillips, J. 1860. Life on the Earth its origin and succession. Macmillan and Co., Cambridge, Mass.Google Scholar
Raja, N., Dunne, E., Matiwane, A., Khan, T., Nätscher, P., Ghilardi, A., and Chattopadhyay, D.. 2022. Colonial history and global economics distort our understanding of deep-time biodiversity. 6:145154.Google ScholarPubMed
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic: the increase in the number of marine species since the Paleozoic may be more apparent than real. Science 177:10651071.CrossRefGoogle Scholar
Raup, D. M. 1976. Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289297.CrossRefGoogle Scholar
Raup, D. M., and Sepkoski, J. J.. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.CrossRefGoogle ScholarPubMed
Raymond, O. L., Gallagher, R., Shaw, R., Yeates, A., Doutch, H., Palfreyman, D., and Blake, D.. 2010. Surface geology of Australia, 2010 ed. [digital dataset]. 1:2,500,000 scale. Geoscience Australia, Commonwealth of Australia, Canberra. http://www.ga.gov.au.Google Scholar
Ronov, A. B., Khain, V. E., Balukhovsky, A. N., and Seslavinsky, K. B.. 1980. Quantitative analysis of Phanerozoic sedimentation. Sedimentary Geology 25:311325.CrossRefGoogle Scholar
Rook, D. L., Heim, N. A., and Marcot, J.. 2013. Contrasting patterns and connections of rock and biotic diversity in the marine and non-marine fossil records of North America. Palaeogeography, Palaeoclimatology, Palaeoecology 372:123129.CrossRefGoogle Scholar
Sansom, R. S., Choate, P. G., Keating, J. N., and Randle, E.. 2018. Parsimony, not Bayesian analysis, recovers more stratigraphically congruent phylogenetic trees. Biology Letters 14:20180263.CrossRefGoogle Scholar
Schramm, T. J. 2011. Sequence stratigraphy of the Late Ordovician (Katian), Maysvillian Stage of the Cincinnati Arch, Indiana, Kentucky, and Ohio, USA. M.S. thesis. University of Cincinnati, Cincinnati, Ohio.Google Scholar
Sengör, A. C. 2021. History of geology. Encyclopedia of Geology 1:136.Google Scholar
Sepkoski, J. J. 1976. Species diversity in the Phanerozoic: species-area effects. Paleobiology 2:298303.CrossRefGoogle Scholar
Sepkoski, J. J. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.CrossRefGoogle Scholar
Sheehan, P. M. 1977. A reflection of labor by systematists? Paleobiology 3:325328.CrossRefGoogle Scholar
Siqueira, A. C., Kiessling, W., and Bellwood, D. R.. 2022. Fast-growing species shape the evolution of reef corals. Nature Communications 13:ar2426.CrossRefGoogle ScholarPubMed
Smith, A. B. 2001. Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society of London B 356:351367.CrossRefGoogle ScholarPubMed
Smith, A. B., Gale, A. S., and Monks, N. E.. 2001. Sea-level change and rock-record bias in the Cretaceous: a problem for extinction and biodiversity studies. Paleobiology 27:241253.2.0.CO;2>CrossRefGoogle Scholar
Smith, M. E., Carroll, A. R., and Singer, B. S.. 2008. Synoptic reconstruction of a major ancient lake system: Eocene Green River Formation, western United States. Geological Society of America Bulletin 120:5484.CrossRefGoogle Scholar
Song, H., Kemp, D. B., Tian, L., Chu, D., Song, H., and Dai, X.. 2021. Thresholds of temperature change for mass extinctions. Nature Communications 12:ar6964.CrossRefGoogle ScholarPubMed
Spiridonov, A., and Lovejoy, S.. 2022. Life rather than climate influences diversity at scales greater than 40 million years. Nature 607:307312.CrossRefGoogle ScholarPubMed
Thiéblemont, D. 2016. New edition of the 1: 10,000,000 geological map of Africa. CGMW- BRGM 190:3311225.Google Scholar
Valentine, J. W., and Moores, E. M.. 1970. Plate-tectonic regulation of faunal diversity and sea level: a model. Nature 228:657659.CrossRefGoogle ScholarPubMed
Valentine, J. W., and Moores, E. M.. 1972. Global tectonics and the fossil record. Journal of Geology 80:167184.CrossRefGoogle Scholar
Wang, G. X., Zhan, R. B., Deng, Z. Q., and Liu, J. B.. 2013. Paleoecological associations of Middle Llandovery (Silurian) corals from Huaying Mountain, eastern Sichuan Province. Science China Earth Sciences 56:640646.CrossRefGoogle Scholar
Wang, G., Wei, X., Luan, X., Wu, R., Percival, I. G., and Zhan, R.. 2020. Constraining the biotic transitions across the end-Ordovician mass extinction in South China: bio- and chemostratigraphy of the Wulipo formation in the Meitan area of northern Guizhou. Geological Journal 55:63996411.CrossRefGoogle Scholar
Woodrow, D. L. 1985. Paleogeography, paleoclimate, and sedimentary processes of the Late Devonian Catskill Delta. In Woodrow, D. L. and Sevon, W., eds. The Catskill Delta. Geological Society of America Special Paper 201:5163.CrossRefGoogle Scholar
Woodrow, D. L., and Isley, A. M.. 1983. Fades, topography, and sedimentary processes in the Catskill Sea (Devonian), New York and Pennsylvania. Geological Society of America Bulletin 94:459.2.0.CO;2>CrossRefGoogle Scholar
Wu, H., Zhang, Y., and Sun, Y.. 2019. A mixed Permian–Triassic boundary brachiopod fauna from Guizhou Province, South China. Rivista Italiana di Paleontologia e Stratigrafia 125:609630.Google Scholar
Zaffos, A., Finnegan, S., and Peters, S. E.. 2017. Plate tectonic regulation of global marine animal diversity. Proceedings of the National Academy of Sciences USA 114:56535658.CrossRefGoogle ScholarPubMed
Zhang, X., Over, D. J., Ma, K., and Gong, Y.. 2019. Upper Devonian conodont zonation, sea-level changes and bio-events in offshore carbonate facies Lali section, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 531:109219.CrossRefGoogle Scholar
Zhang, Y., and He, W.. 2008. Evolutionary patterns of Productida (Brachiopoda) morphology during the Permian in South China. Science in China Series D 51:15891600.CrossRefGoogle Scholar