Skip to main content

Extrapolating body masses in large terrestrial vertebrates

  • Nicolás E. Campione (a1)

Despite more than a century of interest, body-mass estimation in the fossil record remains contentious, particularly when estimating the body mass of taxa outside the size scope of living animals. One estimation approach uses humeral and femoral (stylopodial) circumferences collected from extant (living) terrestrial vertebrates to infer the body masses of extinct tetrapods through scaling models. When applied to very large extinct taxa, extant-based scaling approaches incur obvious methodological extrapolations leading some to suggest that they may overestimate the body masses of large terrestrial vertebrates. Here, I test the implicit assumption of such assertions: that a quadratic model provides a better fit to the combined humeral and femoral circumferences-to-body mass relationship. I then examine the extrapolation potential of these models through a series of subsetting exercises in which lower body-mass sets are used to estimate larger sets. Model fitting recovered greater support for the original linear model, and a nonsignificant second-degree term indicates that the quadratic relationship is statistically linear. Nevertheless, some statistical support was obtained for the quadratic model, and application of the quadratic model to a series of dinosaurs provides lower mass estimates at larger sizes that are more consistent with recent estimates using a minimum convex-hull (MCH) approach. Given this consistency, a quadratic model may be preferred at this time. Still, caution is advised; extrapolations of quadratic functions are unpredictable compared with linear functions. Further research testing the MCH approach (e.g., the use of a universal upscaling factor) may shed light on the linear versus quadratic nature of the relationship between the combined femoral and humeral circumferences and body mass.

Hide All
Adrian A. 2014. xlsx: read, write, format Excel 2007 and Excel 97/2000/XP/2003 files, Version 0.5.7.
Alexander R. M. 1985. Mechanics of posture and gait of some large dinosaurs. Zoological Journal of the Linnean Society 83:125.
Anderson J. F., Hall-Martin A., and Russell D. A.. 1985. Long-bone circumference and weight in mammals, birds and dinosaurs. Journal of the Zoological Society of London A 207:5361.
Andrej-Nikolai S. 2014. qpcR: modelling and analysis of real-time PCR data, Version 1.4-0.
Bates K. T., Manning P. L., Hodgetts D., and Sellers W. I.. 2009. Estimating mass properties of dinosaurs using laser imaging and 3D computer modelling. PLoS ONE 4:e4532. doi: 10.1371/journal.pone.0004532.
Bates K. T., Falkingham P. L., Macaulay S., Brassey C., and Maidment S. C. R.. 2015. Downsizing a giant: re-evaluating Dreadnoughtus body mass. Biology Letters 11:20150215. doi: 10.1098/rsbl.2015.0215.
Bates K. T., Mannion P. D., Falkingham P. L., Brusatte S. L., Hutchinson J. R., Otero A., Sellers W. I., Sullivan C., Stevens K. A., and Allen V.. 2016. Temporal and phylogenetic evolution of the sauropod dinosaur body plan. Royal Society Open Science 3:150636. doi: 10.1098/rsos.150636.
Benson R. B. J., Campione N. E., Carrano M. T., Mannion P. D., Sullivan C., Upchurch P., and Evans D. C.. 2014. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biol 12:e1001853. doi: 10.1371/journal.pbio.1001853.
Brassey C. A., and Sellers W. I.. 2014. Scaling of Convex Hull Volume to Body Mass in Modern Primates, Non-Primate Mammals and Birds. PLoS ONE 9:e91691. doi: 10.1371/journal.pone.0091691.
Brassey C. A., Maidment S. C. R., and Barrett P. M.. 2015. Body mass estimates of an exceptionally complete Stegosaurus (Ornithischia: Thyreophora): comparing volumetric and linear bivariate mass estimation methods. Biology Letters 11:20140984. doi: 10.1098/rsbl.2014.0984.
Campione N. E., and Evans D. C.. 2012. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biology 10:60. doi: 10.1186/1741-7007-10-60.
Campione N. E., Evans D. C., Brown C. M., and Carrano M. T.. 2014. Body mass estimation in non-avian bipeds using a theoretical conversion to quadruped stylopodial proportions. Methods in Ecology and Evolution 5:913923. doi: 10.1111/2041-210X.12226.
Christiansen P. 1998. Strength indicator values of theropod long bones, with comments on limb proportions and cursorial potential. Gaia 15:241255.
Colbert E. H. 1962. The weights of dinosaurs. American Museum Novitates 2076:116.
Erickson G. M., and Tumanova T. A.. 2000. Growth curve of Psittacosaurus mongoliensis Orborn (Ceratopsia; Psittacosauridae) inferred from long bone histology. Zoological Journal of the Linnean Society 130:551566.
Franz R., Hummel J., Kiensle E., Kölle P., Gunga H.-C., and Clauss M.. 2009. Allometry of visceral organs in living amniotes and its implications for sauropod dinosaurs. Proceedings of the Royal Society of London B 276:1731–1736. doi:10.1098/rspb.2008.1735.
Gould S. J. 1965. Is uniformitarianism necessary? American Journal of Science 263:223228.
Gregory W. K. 1905. The weight of Brontosaurus . Science, new series 22:572.
Gunga H.-C., Suthau T., Bellmann A., Stoinski S., Friedrich A., Trippel T., Kirsch K., and Hellwich O.. 2008. A new body mass estimation of Brachiosaurus brancai Janensch, 1914 mounted and exhibited at the Museum of Natural History (Berlin, Germany). Fossil Record 11:3338. doi: 10.1002/mmng.200700011.
Henderson D. M. 1999. Estimating the masses and centers of mass of extinct animals by 3-D mathematical slicing. Paleobiology 25:88106.
Hutchinson J. R., Bates K. T., Molnar J., Allen V., and Makovicky P. J.. 2011. A computational analysis of limb and body dimensions in Tyrannosaurus rex with implications for locomotion, ontogeny, and growth. PLoS ONE 6:e26037. doi: 10.1371/journal.pone.0026037.
Lacovara K. J., Lamanna M. C., Ibiricu L. M., Poole J. C., Schroeter E. R., Ullmann P. V., Voegele K. K., Boles Z. M., Carter A. M., Fowler E. K., Egerton V. M., Moyer A. E., Coughenour C. L., Schein J. P., Harris J. D., Martínez R. D., and Novas F. E.. 2014. A Gigantic, Exceptionally Complete Titanosaurian Sauropod Dinosaur from Southern Patagonia, Argentina. Scientific Reports 4:6196. doi:10.1038/srep06196.
Makarieva A., Gorshkov M., V. G., and Li B.-L.. 2005. Gigantism, temperature and metabolic rate in terrestrial poikilotherms. Proceedings of the Royal Society of London B 272:2325–2328. doi: 10.1098/rspb.2005.3223.
O’Gorman E. J., and Hone D. W. E.. 2012. Body size distribution of the dinosaurs. PLoS ONE 7:e51925. doi: 10.1371/journal.pone.0051925.
Paradis E. 2012. Analysis of phylogenetics and evolution with R. Springer, New York.
Pennell M. W., Eastman J. M., Slater G. J., Brown J. W., Uyeda J. C., FitzJohn R. G., Alfaro M. E., and Harmon L. J.. 2014. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30:22162218. doi: 10.1093/bioinformatics/btu181.
Peters R. H. 1983. The ecological implications of body size. Cambridge University Press, New York.
Pinheiro J., Bates D., DebRoy S., Sarkar D., and Core Team R. 2015. nlme: linear and nonlinear mixed effects models. Version 3:1122.
Pontzer H., Allen V., and Hutchinson J. R.. 2009. Biomechanics of running indicates endothermy in bipedal dinosaurs. PLoS ONE 4:e7783. doi: 10.1371/journal.pone.0007783.
R Development Core Team. 2015. R: a language and environment for statistical computing, Version 3.2.3. R Foundation for Statistical Computing, Vienna, Austria.
Sellers W. I., Hepworth-Bell J., Falkingham P. L., Bates K. T., Brassey C. A., Egerton V. M., and Manning P. L.. 2012. Minimum convex hull mass estimations of complete mounted skeletons. Biology Letters 8:842845. doi: 10.1098/rsbl.2012.0263.
Wilson J. 2002. Sauropod dinosaur phylogeny: critique and cladistic analysis. Zoological Journal of the Linnean Society 136:215275. doi: 10.1046/j.1096-3642.2002.00029.x.
Wilson J. A., and Carrano M. T.. 1999. Titanosaurs and the origin of “wide-gauge” trackways: a biomechanical and systematic perspective on sauropod locomotion. Paleobiology 25:252267.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 15
Total number of PDF views: 87 *
Loading metrics...

Abstract views

Total abstract views: 819 *
Loading metrics...

* Views captured on Cambridge Core between 30th June 2017 - 16th January 2018. This data will be updated every 24 hours.