Skip to main content

The impact of geographic range, sampling, ecology, and time on extinction risk in the volatile clade Graptoloida

  • James Boyle (a1), H. David Sheets (a2), Shuang-Ye Wu (a3), Daniel Goldman (a3), Michael J. Melchin (a4), Roger A. Cooper (a5), Peter M. Sadler (a6) and Charles E. Mitchell (a1)...

Although extinction risk has been found to have a consistent negative relationship with geographic range across wide temporal and taxonomic scales, the effect has been difficult to disentangle from factors such as sampling, ecological niche, or clade. In addition, studies of extinction risk have focused on benthic invertebrates with less work on planktic taxa. We employed a global set of 1114 planktic graptolite species from the Ordovician to lower Devonian to analyze the predictive power of species’ traits and abiotic factors on extinction risk, combining general linear models (GLMs), partial least-squares regression (PLSR), and permutation tests. Factors included measures of geographic range, sampling, and graptolite-specific factors such as clade, biofacies affiliation, shallow water tolerance, and age cohorts split at the base of the Katian and Rhuddanian stages.

The percent variance in durations explained varied substantially between taxon subsets from 12% to 45%. Overall commonness, the correlated effects of geographic range and sampling, was the strongest, most consistent factor (12–30% variance explained), with clade and age cohort adding up to 18% and other factors <10%. Surprisingly, geographic range alone contributed little explanatory power (<5%). It is likely that this is a consequence of a nonlinear relationship between geographic range and extinction risk, wherein the largest reductions in extinction risk are gained from moderate expansion of small geographic ranges. Thus, even large differences in range size between graptolite species did not lead to a proportionate difference in extinction risk because of the large average ranges of these species. Finally, we emphasize that the common practice of determining the geographic range of taxa from the union of all occurrences over their duration poses a substantial risk of overestimating the geographic scope of the realized ecological niche and, thus, of further conflating sampling effects on observed duration with the biological effects of range size on extinction risk.

Hide All
Aberhan, M., and Baumiller, T. L.. 2003. Selective extinction among Early Jurassic bivalves: a consequence of anoxia. Geology 31:10771080.
Addo-Bediako, A., Chown, S. L., and Gaston, K. J.. 2000. Thermal tolerance, climatic vulnerability and latitude. Proceedings of the Royal Society of London B 267:739745.
Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19:716723.
Alroy, J. 2008. Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences USA 105:1153611542.
Anstey, R. L. 1986. Bryozoan provinces and patterns of generic evolution and extinction in the Late Ordovician of North America. Lethaia 19:3351.
Anstey, R. L., Pachut, J. F., and Tuckey, M. E.. 2003. Patterns of bryozoan endemism through Ordovician–Silurian transition. Paleobiology 29:305328.
Armstrong, H. A., and Harper, D. A. T.. 2014. An earth system approach to understanding the end-Ordovician (Hirnantian) mass extinction. Geological Society of America Special Paper 505:287300.
Armstrong, H. A., Baldini, J., Challands, T. J., Gröcke, D. R., and Owen, A. W.. 2009. Response of the inter-tropical convergence zone to southern hemisphere cooling during the Upper Ordovician glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 284:227236.
Bambach, R. K., Knoll, A. H., and Wang, S. C.. 2004. Origination, extinction and mass depletions of marine diversity. Paleobiology 30:522542.
Bapst, D. W., Bullock, P. C., Melchin, M. J., Sheets, H. D., and Mitchell, C. E.. 2012. Graptolite diversity and disparity became decoupled during the Ordovician mass extinction. Proceedings of the National Academy of Sciences USA 109:34283433.
Baumiller, T. K. 1993. Survivorship analysis of Paleozoic Crinoidea: effect of filter morphology on evolutionary rates. Paleobiology 19:304321.
Berry, W. B. N. 1962. Graptolite occurrence and ecology. Journal of Paleontology 36:285293.
Bjørklund, K. R., Kruglikova, S. B., and Anderson, O. R.. 2012. Modern incursions of tropical radiolaria into the Arctic Ocean. Journal of Micropalaeontology 31:139158.
Boyajian, G. E. 1991. Taxon age and selectivity of extinction. Paleobiology 17:4957.
Boyle, J. T., Sheets, H. D., Wu, S.-Y., Goldman, D., Melchin, M. J., Cooper, R. A., Sadler, P. M., and Mitchell, C. E.. 2014. A re-examination of the contributions of biofacies and geographic range to extinction risk in Ordovician graptolites. GFF 136:3841.
Brenchley, P. J., Marshall, J. D., and Underwood, C. J.. 2001. Do all mass extinction represent an ecological crisis? Evidence from the Late Ordovician. Geologic Journal 36:329340.
Bretsky, P. W. 1973. Evolutionary patterns in the Paleozoic Bivalvia: documentation and some theoretical considerations. Geological Society of America Bulletin 84:20792096.
Brown, J. H., Stevens, G. C., and Kaufman, D. M.. 1996. The geographic range: size, shape, boundaries, and internal structure. Annual Review of Ecological Systematics 27:597623.
Burgman, M. A., and Fox, J. C.. 2003. Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning. Animal Conservation 6:1928.
Calner, M., Lehnert, O., and Nõlvak, J.. 2010. Palaeokarst evidence for widespread regression and subaerial exposure in the middle Katian (Upper Ordovician) of Baltoscandia: significance for global climate. Palaeogeography, Paleoclimatology, Paleoecology 296:235247.
Chen, X., Yuan-Dong, Z., and Mitchell, C. E.. 2001. Early Darriwilian graptolites from central and western China. Alcheringa: An Australian Journal of Paleontology 25:191201.
Chen, X., Melchin, M. J., Sheets, H. D., Mitchell, C. E., and Jun-Xuan, F.. 2005. Patterns and processes of latest Ordovician graptolite extinction and recovery based on data from south China. Journal of Paleontology 79:842861.
Christiansen, J. L., and Stouge, S.. 1999. Oceanic circulation as an element in palaeogeographical reconstructions: the Arenig (early Ordovician) as an example. Terra Nova 11:7378.
Cisne, J. L., and Chandlee, G. O.. 1982. Taconic foreland basin graptolites: age zonation, depth zonation, and use in ecostratigraphic correlation. Lethaia 15:343363.
Cooper, R. A. 1999. Ecostratigraphy, zonation and global correlation of earliest Ordovician planktic graptolites. Lethaia 32:116.
Cooper, R. A., and Sadler, P. M.. 2010. Biofacies preference predicts extinction risk in Ordovician Graptolites. Paleobiology 36:167187.
Cooper, R. A., and Sadler, P. M.. 2012. The Ordovician Period. Pp. 489555 in F. Gradstein, J. Ogg, M. Schmitz, and G. Ogg, eds. The Geologic Time Scale 2012. Elsevier, Oxford.
Cooper, R. A., Fortey, R. A., and Lindholm, K.. 1991. Latitudinal and depth zonation of early Ordovician graptolites. Lethaia 24:199218.
Cooper, R. A., Rigby, S., Loydell, D. K., and Bates, D.E.B.. 2012. Palaeoecology of the Graptoloidea. Earth-Science Reviews 112:2341.
Cooper, R. A., Sadler, P. M., Munnecke, A., and Crampton, J. S.. 2014. Graptoloid evolutionary rates track Ordovician–Silurian global climate change. Geological Magazine 151:349364.
Crampton, J. S., Cooper, R. A., Sadler, P. M., and Foote, M.. 2016. Greenhouse–icehouse transition in the Late Ordovician marks a step change in extinction regime in the marine plankton. Proceedings of the National Academy of Sciences USA 113:14981503.
Curran-Everett, D. 2000. Multiple comparisons: philosophies and illustrations. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 279:R1R8.
Dunhill, A. M., and Wills, M. A.. 2015. Geographic range did not confer resilience to extinction in terrestrial vertebrates at the end-Triassic crisis. Nature Communications 6:18.
Dunhill, A. M., Hannisdal, B., and Benton, M. J.. 2014. Disentangling rock record bias and common-cause from redundancy in the British fossil record. Nature Communications 5:19.
Erdtmann, B.-D. 1976. Ecostratigraphy of Ordovician graptoloids. Pp. 621–643 in M. G. Bassett, ed. The Ordovician System: Proceedings of a Palaeontological Association Symposium, Birmingham, September 1974. University of Wales Press and National Museum of Wales, Cardiff.
Erwin, D. H. 1989. Regional paleoecology of Permian gastropod genera, southwestern United States and the end-Permian mass extinction. Palaios 4:424438.
Finnegan, S., Payne, J. L., and Wang, S. C.. 2008. The Red Queen revisited: reevaluating the age selectivity of Phanerozoic marine genus extinctions. Paleobiology 34:318341.
Finnegan, S., Heim, N. A., Peters, S. E., and Fischer, W. W.. 2012. Climate change and the selective signature of the Late Ordovician mass extinction. Proceedings of the National Academy of Sciences USA 109:68296834.
Finney, S. C. 1984. Biogeography of Ordovician graptolites in the southern Appalachians. Pp. 167176 in D. L. Bruton, ed. Aspects of the Ordovician System. Norsk, Universitetsforlaget, Oslo.
Finney, S. C. 1986. Graptolite biofacies and correlation of eustatic, subsidence, and tectonic events in the Middle to Upper Ordovician of North America. Palaios 1:435461.
Finney, S. C., and Berry, W. B. N.. 1997. New perspectives on graptolite distributions and their use as indicators of platform margin dynamics. Geology 25:919922.
Finney, S. C., Berry, W. B. N., and Cooper, J. D.. 2007. The influence of denitrifying seawater on graptolite extinction and diversification during the Hirnantian (latest Ordovician) mass extinction event. Lethaia 40:281291.
Foden, W. B., Butchart, S. H. M., Stuart, S. N., Vié, J.-C., Akçakaya, H. R., Angulo, A., DeVantier, L. M., Gutsche, A., Turak, E., Cao, L., Donner, S. D., Katariya, V., Bernard, R., Holland, R. A., Hughes, A. F., O’Hanlon, S. E., Garnett, S. T., Şekercioğlu, Ç. H., and Mace, G. M.. 2013. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians, and corals. PLoS ONE 8:e65427.
Foote, M. 2000. Origination and extinction components of taxonomic diversity: general problems. Paleobiology 26:74102.
Foote, M. 2003. Origination and extinction through the Phanerozoic: a new approach. Journal of Geology 111:125148.
Foote, M. 2007a. Extinction and quiescence in marine animal genera. Paleobiology 33:261272.
Foote, M. 2007b. Symmetric waxing and waning of marine invertebrate genera. Paleobiology 33:517529.
Foote, M., and Miller, A. I.. 2013. Determinant of early survival in marine animal genera. Paleobiology 39:171192.
Foote, M., Crampton, J. S., Beu, A. G., Marshall, B. A., Cooper, R. A., Maxwell, P. A., and Matcham, I.. 2007. Rise and fall of species occupancy in Cenozoic fossil mollusks. Science 318:11311134.
Foote, M., Crampton, J. S., Beau, A. G., and Cooper, R. A.. 2008. On the bidirectional relationship between geography range and taxonomic duration. Paleobiology 34:421433.
Fortey, R. A., and Cocks, L. R. M.. 1986. Marginal faunal belts and their structural implications, with examples from the Lower Palaeozoic. Journal of the Geological Society, London 143:151160.
Fortey, R.A., and Cooper, R. A.. 1986. A phylogenetic classification of the graptoloids. Palaeontology 29:631654.
Gaston, K. J. 1994. Geographic range sizes. Ecography 17:198205.
Gaston, K. J., and Fuller, R. A.. 2009. The size of species’ geographic ranges. Journal of Applied Ecology 46:19.
Gaston, K. J., Quinn, R. M., Wood, S., and Arnold, H. R.. 1996. Measure of geographic range size: the effect of sample size. Ecography 19:259268.
Goetze, E. 2011. Population differentiation in the open sea: insights from the pelagic copepod Pleuromamma xiphas . Integrative and Comparative Biology 51:580597.
Goldman, D., Leslie, S. A., Nõlvak, J., Young, S., Bergström, S. M., and Huff, W. D.. 2007. The global stratotype section and point (GSSP) for the base of the Katian Stage of the Upper Ordovician Series at Black Knob Ridge, southeastern Oklahoma, USA. Episodes 30:258270.
Goldman, D., and Wu, S.-Y.. 2010. Paleogeographic, paleoceanographic, and tectonic controls on early Late Ordovician graptolite diversity patterns. In S. C. Finney, and W. B. N. Berry, eds. The Ordovician Earth system. Geological Society of America Special Paper 466:149161.
Goldman, D., Bergström, S. M., Sheets, H. D., and Pantle, C.. 2013a. A CONOP9 composite taxon range chart for Ordovician conodonts from Baltoscandia: a framework for biostratigraphic correlation and maximum-likelihood biodiversity analyses. GFF 136:342354.
Goldman, D., Maletz, J., Melchin, M. J., and Fan, J.. 2013b. Lower Paleozoic graptolite biogeography. In D. A. T. Harper, and T. Servais, eds. Early Paleozoic Palaeobiogeography and Palaeogeography. Geological Society of London Memoir 38:415428.
Graham, R. L., and Hell, P.. 1985. On the history of the minimum spanning tree problem. Annals of the History of Computing 7:4357.
Hallam, A., and Wignall, P. B.. 1997. Mass extinctions and their aftermath. Oxford University Press, Oxford.
Hansen, T. A. 1980. Influence of larval dispersal and geographic distribution on species longevity in neogastropods. Paleobiology 6:193207.
Harnik, P. G. 2011. Direct and indirect effects of biological factors on extinction risk in fossil bivalves. Proceedings of the National Academy of Sciences USA 108:1359413599.
Harper, D. A. T., and Rong, J.-Y.. 2001. Paleozoic brachiopod extinctions survival and recovery: patterns within the rhynchonelliformeans. Geological Journal 36:317328.
Harnik, P. G., Simpson, C., and Payne, J. L.. 2012. Long-term differences in extinction risk among the seven forms of rarity. Proceedings of the Royal Society of London B 279:49694976.
Heim, N. A., and Peters, S. E.. 2011. Regional environmental breadth predicts geographic range and longevity in fossil marine genera. PLoS ONE 6:112.
Herrmann, A. D., Haupt, B. J., Patzkowsky, M. E., Seidov, D., and Slingerland, R. L.. 2004. Response of Late Ordovician paleoceanography to changes in sea level, continental drift, and atmospheric pCO2: potential causes for long-term cooling and glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 210:385401.
Hoffman, A., and Kitchell, J. A.. 1984. Evolution in a pelagic planktic system: a paleobiologic test of multispecies evolution. Paleobiology 10:933.
Holland, S. M., and Patzkowsky, M. E.. 2002. Stratigraphic variation in the timing of first and last occurrences. Palaios 17:134146.
Hopkins, M. J. 2011. How species longevity, interspecific morphological variation, and geographical range size are related: a comparison using Late Cambrian trilobites. Evolution 65:32533273.
International Union for the Conservation of Nature 2012. IUCN red list categories and criteria, Version 3.1, 2nd ed. IUCN, Gland, Switzerland.
Jablonski, D. 1986. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129133.
Jablonski, D. 1987. Heritability at the species level: analysis of geographic ranges of Cretaceous mollusks. Science 238:360363.
Jablonski, D. 2005. Mass extinctions and macroevolution. Paleobiology 31:192210.
Jablonski, D. 2008. Extinction and the spatial dynamics of biodiversity. Proceedings of the National Academy of Sciences USA 105:1152811538.
Jablonski, D., and Hunt, G.. 2006. Larval ecology, geographic range, and species survivorship in Cretaceous mollusks: organisms versus species-level explanations. American Naturalist 168:556564.
Jablonski, D., and Raup, D. M.. 1995. Selectivity of end-Cretaceous marine bivalve extinctions. Science 268:389391.
Jacobs, D. K., and Lindberg, D. R.. 1998. Oxygen and evolutionary patterns in the sea: onshore/offshore trends and recent recruitment of deep-sea faunas. Proceedings of the National Academy of Sciences USA 95:93969401.
Jeffery, C. H. 2001. Heart urchins at the Cretaceous/Tertiary boundary: a tale of two clades. Paleobiology 27:140158.
Kajlo, D., Hints, L., Hints, O., Männik, P., Martma, T., and Nõlvak, J.. 2011. Katian prelude to the Hirnantian (Late Ordovician) mass extinction: a Baltic perspective. Geological Journal 46:464477.
Kammer, T. W., Baumiller, T. K., and Ausich, W. I.. 1997. Species longevity as a function of niche breadth: evidence from fossil crinoids. Geology 25:219222.
Kiessling, W., and Aberhan, M.. 2007. Geographical distributions and extinction risk: lessons from Triassic–Jurassic marine benthic organisms. Journal of Biogeography 34:14731489.
Le Hérissé, A., Gourvennec, R., and Wicander, R.. 1997. Biogeography of the Late Silurian and Early Devonian acritarchs and prasinophytes. Review of Palaeobotany and Palynology 98:105124.
Lester, S. E., and Ruttenburg, B. I.. 2005. The relationship between pelagic, larval duration and range size in tropical reef fishes: a synthetic analysis. Proceedings of the Royal Society of London B 272:585591.
Lester, S. E., Ruttenburg, B. I., Gaines, S. D., and Kinlan, B. P.. 2007. The relationship between dispersal ability and geographic range size. Ecology Letters 10:745758.
Levin, D. A., and Wilson, A. C.. 1976. Rates of evolution in seed plants: net increase in diversity of chromosome numbers and species numbers through time. Proceedings of the National Academy of Sciences USA 73:20862090.
Levin, L. A. 2003. Oxygen minimum zone benthos: adaptation and community responses to hypoxia. Oceanography and Marine Biology: An Annual Review 41:145.
Liow, L. H. 2007. Does versatility as measured by geographic range, bathymetric range and morphological variability contribute to taxon longevity? Global Ecology and Biogeography 16:117128.
Liow, L. H., and Stenseth, N. C.. 2007. The rise and fall of species: implications for macroevolutionary and macroecological studies. Proceedings of the Royal Society of London B 274:27452752.
Liow, L. H., Fortelius, M., Lintulaakso, K., Mannila, H., and Stenseth, N. C.. 2009. Lower extinction risk in sleep-or-hide mammals. American Naturalist 173:264272.
Maletz, J. 2014. The classification of the Pterobranchia (Cephalodiscida and Graptolithina). Bulletin of Geosciences 89:164.
Maletz, J., Carlucci, J., and Mitchell, C. E.. 2009. Graptolite cladistics, taxonomy and phylogeny. Bulletin of Geosciences 84:719.
McRoberts, C. A., and Newton, C. R.. 1995. Selective extinction among end-Triassic European bivalves. Geology 23:102104.
Melchin, M. J., and Mitchell, C. E.. 1991. Late Ordovician extinction in the Graptoloidea. In C. R. Barnes, and S. H. Williams, eds. Advances in Ordovician Geology. Geological Survey of Canada 90:143156.
Melchin, M. J., Mitchell, C. E., Naczk-Cameron, A., Fan, J. X., and Loxton, J.. 2011. Phylogeny and adaptive radiation of the Neograptina (Graptoloidea) during the Hirnantian mass extinction and Silurian recovery. Proceedings of the Yorkshire Geological Society 58:281309.
Melchin, M. J., Sadler, P. M., Cramer, B. D., Cooper, R. A., Gradstein, F. M., and Hammer, Ø.. 2012. The Silurian Period. Pp. 525558 in F. Gradstein, J. Ogg, M. Schmitz, and G. Ogg, eds. The Geologic Time Scale 2012. Elsevier, Oxford.
Melchin, M. J., Mitchell, C. E., Holmden, C., and Štorch, P.. 2013. Environmental changes in the Late Ordovician-early Silurian: review and new insights from black shale and nitrogen isotopes. Geological Society of America Bulletin 125:16351670.
Mevik, B.-H., and Wehrens, R.. 2007. The pls package: principal component and partial least squares regression in R. Journal of Statistical Software 18:124.
Miller, A. I. 1997. A new look at age and area: the geographic and environmental expansion of genera during the Ordovician radiation. Paleobiology 23:410419.
Mitchell, C. E. 1990. Directional graptolite macroevolution of the diplograptacean graptolites: a product of astogenetic heterochrony and directed speciation. In P. D. Taylor, and G. P. Larwood, eds. Major evolutionary radiations. Systematics Association Special Volume 42:235264. Clarendon, Oxford.
Mitchell, C. E., Sheets, H. D., Belscher, K., Finney, S. C., Holmden, C., LaPorte, D. F., Melchin, M. J., and Patterson, W. P.. 2007. Species abundance changes during mass extinctions and the inverse Signor-Lipps effect: apparently abrupt graptolite mass extinction as an artifact of sampling. Acta Palaeontologica Sinica 46:340346.
Mullins, H. T., Thompson, J. B., McDougall, K., and Vercoutere, T. L.. 1985. Oxygen-minimum zone edge effects: evidence from the central California coastal upwelling system. Geology 13:491494.
Navas, A., Baldwin, J. G., Barrios, L., and Nombela, G.. 1993. Phylogeny and biogeography of Longidorus (Nematoda: Longidoridae) in Euromediterranea. Nematologia Mediterranea 21:7188.
Norris, R. D. 2000. Pelagic species diversity, biogeography, and evolution. Paleobiology 26:236258.
Parker, W. C., Feldman, A., and Arnold, A. J.. 1999. Paleobiogeographic patterns in the morphological diversification of the Neogene planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology 152:114.
Payne, J. L., and Finnegan, S.. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:1050610511.
Peters, S. E. 2006. Genus extinction, origination, and the duration of sedimentary hiatuses. Paleobiology 32:387407.
Peters, S. E., and Foote, M.. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583601.
Polcyn, M. J., Jacobs, L. L., Araújo, R., and Schulp, A. S.. 2013. Physical drivers of mosasaur evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 400:1727.
Pope, M. C., and Steffen, J. B.. 2003. Widespread, prolonged late Middle to Late Ordovician upwelling in North America: a proxy record of glaciation? Geology 31:6366.
Powell, M. G. 2007. Geographic range and genus longevity of Late Paleozoic brachiopods. Paleobiology 33:530546.
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 22:10651071.
Raup, D. M., and Sepkoski, J. J.. 1982. Mass extinction in the marine fossil record. Science 215:15011503.
Rapoport, E. 1982. Areography: geographical strategies of species. Pergamon, Oxford.
Rigby, S. 1991. Feeding strategy in graptoloids. Paleontology 34:797813.
Robertson, D. B. R., Brenchley, P. J., and Owen, A.W.. 1991. Ecological disruption close to the Ordovician–Silurian boundary. Historical Biology 5:131144.
Rode, A. L., and Lieberman, B. S.. 2004. Using GIS to unlock the interactions between biogeography, environment, and evolution in Middle and Late Devonian brachiopods and bivalves. Palaeogeography, Palaeoclimatology, Palaeoecology 211:345359.
Rogers, A. D. 2000. The role of the oceanic oxygen minima in generating biodiversity in the deep sea. Deep-Sea Research II 47:119148.
Rong, J.-Y., Chen, X., and Harper, D. A. T.. 2002. The latest Ordovician Hirnantia fauna (Brachiopoda) in time and space. Lethaia 35:231249.
Rong, J.-Y., Melchin, M. J., Williams, S. H., Koren, T. N., and Verniers, J.. 2008. Report of the study of the defined global stratotype of the base of the Silurian System. Episodes 31:315318.
Rothwell Group. 2007. PaleoGIS/Arcview 3.5, PALEOMAP Project. University of Texas at Arlington.
Russell, M. P., and Lindberg, D. R.. 1988. Real and random patterns associated with molluscan spatial and temporal distributions. Paleobiology 14:322330.
Sadler, P. M., Kemple, W. G., and Kooser, M. A.. 2003. Contents of the compact disk—CONOP9 programs for solving the stratigraphic correlation and seriation problems as constrained optimization. In P. J. Harries, ed. High resolution approaches in stratigraphic paleontology. Topics in Geobiology 21:461465. Kluwer Academic, Dordrecht, Netherlands.
Sadler, P. M., Cooper, R. A., and Melchin, M. J.. 2009. High-resolution, early Paleozoic (Ordovician–Silurian) time scales. Geological Society of America Bulletin 121:887906.
Sadler, P. M., Cooper, R. A., and Melchin, M. J.. 2011. Sequencing the graptolite clade: building a global diversity curve from local range charts, regional time-charts and global time-lines. Proceedings of the Yorkshire Geological Society 58:329343.
Seghouane, A.-K. 2011. New AIC corrected variants for multivariate linear regression model selection. IEEE Transactions on Aerospace and Electronic Systems 47:11541164.
Servais, T., Owen, A. W., Harper, D. A. T., Kröger, B., and Munnecke, A.. 2010. The Great Ordovician Biodiversification Event (GOBE): the palaeoecological dimension. Palaeogeography, Palaeoclimatology, Palaeoecology 294:99119.
Shaw, A. B. 1964. Time in stratigraphy. McGraw-Hill, New York.
Sheehan, P. M., and Coorough, P. J.. 1990. Brachiopod zoogeography across the Ordovician–Silurian extinction event. Geological Society of London Memoir 12:181187.
Sheehan, P. M., Coorough, P. J., and Fastovsky, D. E.. 1996. Biotic selectivity during the K/T and Late Ordovician extinction events. Geological Society of America Special Paper 307:477489.
Simpson, C., and Harnik, P. G.. 2009. Assessing the role of abundance in marine bivalve extinction over the post-Paleozoic. Paleobiology 35:631647.
Smith, A. B., and Jeffery, C. H.. 1998. Selectivity of extinction among sea urchins at the end of the Cretaceous period. Nature 392:6971.
Smith, A. B., and Jeffery, C. H.. 2000. Changes in the diversity, taxic composition and life-history patterns of echinoids over the past 145 million years. Pp. 181194 in S. J. Culver, and P. F. Rawson, eds. Biotic response to global change: the last 145 million years. Cambridge University Press, Cambridge.
Smith, A. B., and McGowan, A. J.. 2007. The shape of the Phanerozoic marine paleodiversity curve: how much can be predicted from the sedimentary rock record of western Europe? Palaeontology 50:765774.
Stanley, S. M. 1979. Macroevolution: patterns and processes. Johns Hopkins University Press, Baltimore, Md.
Stanley, S. M. 1986. Population size, extinction, and speciation: the fission effect in Neogene bivalvia. Paleobiology 12:89110.
Stanley, S. M., Wetmore, K. L., and Kennett, J. P.. 1988. Macroevolutionary differences between the two major clades of Neogene planktonic foraminifera. Paleobiology 14:235249.
Steeman, M. E., Hebsgaard, M. B., Fordyce, R. E., Ho, S. W. Y., Rabosky, D. L., Nielsen, R., Rahbek, C., Glenner, H., Sørensen, M. V., and Willerslev, E.. 2009. Radiation of extant cetaceans driven by restructuring of the oceans. Systematic Biology 58:573585.
Štorch, P., Mitchell, C. E., Finney, S. C., and Melchin, M. J.. 2011. Uppermost Ordovician (upper Katian–Hirnantian) graptolites of north-central Nevada, U.S.A. Bulletin of Geosciences 86:301386.
Sunday, J. M., Bates, A. E., and Dulvy, N. K.. 2011. Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society of London B 278:18231830.
Teller, L. 1969. The Silurian biostratigraphy of Poland based on graptolites. Acta Geological Polonica 19:393501.
Torsvik, T. H., and Cocks, L. R. M.. 2009. BugPlates: linking biogeography and palaeogeography. Software manual.
Torsvik, T. H., and Cocks, L. R. M.. 2013. New global palaeogeographical reconstructions for the Early Paleozoic and their generation. Geological Society of London Memoir 38:524.
Trotter, J. A., Williams, I. S., Barnes, C. R., Lécuyer, C., and Nicoll, R. S.. 2008. Did cooling trigger Ordovician biodiversification? Evidence from conodont thermometry. Science 321:550554.
Vandenbroucke, T. R. A., Armstrong, H. A., Williams, M., Zalasiewicz, J. A., and Sabbe, K.. 2009. Ground-truthing Late Ordovician climate models using the palaeobiogeography of graptolites. Paleoceanography 24:119.
Vandenbroucke, T. R. A., Armstrong, H. A., Williams, M., Paris, F., Zalasiewicz, J. A., Sabbe, K., Nõlvak, J., Challands, T. J., Verniers, J., and Servais, T.. 2010. Polar front shift and atmospheric CO2 during the glacial maximum of the Early Paleozoic icehouse. Proceedings of the National Academy of Sciences USA 107:1498314986.
Vilhena, D. A., Harris, E. B., Bergstrom, C. T., Maliska, M. E., Ward, P. D., Sidor, C. A., Strömberg, C. A. E., and Wilson, G. P.. 2013. Bivalve network reveals latitudinal selectivity gradient at the end-Cretaceous mass extinction. Scientific Reports 3:15.
Wall, P. D., Ivany, L. C., and Wilkinson, B. H.. 2009. Revisiting Raup: exploring the influence of outcrop area on diversity in light of modern sample-standardization techniques. Paleobiology 35:146167.
Wilde, P. 1991. Oceanography in the Ordovician. In C. R. Barnes, and S. H. Williams, eds. Advances in Ordovician Geology. Geological Survey of Canada Paper 90–9:283298.
Young, S. A., Saltzman, M. R., Foland, K. A., Linder, J. S., and Kump, L. R.. 2009. A major drop in seawater 87Sr/86Sr during the Middle Ordovician (Darriwilian): links to volcanism and climate? Geology 37:951954.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 14
Total number of PDF views: 94 *
Loading metrics...

Abstract views

Total abstract views: 590 *
Loading metrics...

* Views captured on Cambridge Core between 20th December 2016 - 23rd March 2018. This data will be updated every 24 hours.