Skip to main content
×
Home
    • Aa
    • Aa

The impact of geographic range, sampling, ecology, and time on extinction risk in the volatile clade Graptoloida

  • James Boyle (a1), H. David Sheets (a2), Shuang-Ye Wu (a3), Daniel Goldman (a3), Michael J. Melchin (a4), Roger A. Cooper (a5), Peter M. Sadler (a6) and Charles E. Mitchell (a1)...
Abstract
Abstract

Although extinction risk has been found to have a consistent negative relationship with geographic range across wide temporal and taxonomic scales, the effect has been difficult to disentangle from factors such as sampling, ecological niche, or clade. In addition, studies of extinction risk have focused on benthic invertebrates with less work on planktic taxa. We employed a global set of 1114 planktic graptolite species from the Ordovician to lower Devonian to analyze the predictive power of species’ traits and abiotic factors on extinction risk, combining general linear models (GLMs), partial least-squares regression (PLSR), and permutation tests. Factors included measures of geographic range, sampling, and graptolite-specific factors such as clade, biofacies affiliation, shallow water tolerance, and age cohorts split at the base of the Katian and Rhuddanian stages.

The percent variance in durations explained varied substantially between taxon subsets from 12% to 45%. Overall commonness, the correlated effects of geographic range and sampling, was the strongest, most consistent factor (12–30% variance explained), with clade and age cohort adding up to 18% and other factors <10%. Surprisingly, geographic range alone contributed little explanatory power (<5%). It is likely that this is a consequence of a nonlinear relationship between geographic range and extinction risk, wherein the largest reductions in extinction risk are gained from moderate expansion of small geographic ranges. Thus, even large differences in range size between graptolite species did not lead to a proportionate difference in extinction risk because of the large average ranges of these species. Finally, we emphasize that the common practice of determining the geographic range of taxa from the union of all occurrences over their duration poses a substantial risk of overestimating the geographic scope of the realized ecological niche and, thus, of further conflating sampling effects on observed duration with the biological effects of range size on extinction risk.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M. Aberhan , and T. L. Baumiller . 2003. Selective extinction among Early Jurassic bivalves: a consequence of anoxia. Geology 31:10771080.

A. Addo-Bediako , S. L. Chown , and K. J. Gaston . 2000. Thermal tolerance, climatic vulnerability and latitude. Proceedings of the Royal Society of London B 267:739745.

H. Akaike 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19:716723.

J. Alroy 2008. Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences USA 105:1153611542.

R. L. Anstey 1986. Bryozoan provinces and patterns of generic evolution and extinction in the Late Ordovician of North America. Lethaia 19:3351.

R. L. Anstey , J. F. Pachut , and M. E. Tuckey . 2003. Patterns of bryozoan endemism through Ordovician–Silurian transition. Paleobiology 29:305328.

H. A. Armstrong , and D. A. T. Harper . 2014. An earth system approach to understanding the end-Ordovician (Hirnantian) mass extinction. Geological Society of America Special Paper 505:287300.

H. A. Armstrong , J. Baldini , T. J. Challands , D. R. Gröcke , and A. W. Owen . 2009. Response of the inter-tropical convergence zone to southern hemisphere cooling during the Upper Ordovician glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 284:227236.

R. K. Bambach , A. H. Knoll , and S. C. Wang . 2004. Origination, extinction and mass depletions of marine diversity. Paleobiology 30:522542.

D. W. Bapst , P. C. Bullock , M. J. Melchin , H. D. Sheets , and C. E. Mitchell . 2012. Graptolite diversity and disparity became decoupled during the Ordovician mass extinction. Proceedings of the National Academy of Sciences USA 109:34283433.

T. K. Baumiller 1993. Survivorship analysis of Paleozoic Crinoidea: effect of filter morphology on evolutionary rates. Paleobiology 19:304321.

K. R. Bjørklund , S. B. Kruglikova , and O. R. Anderson . 2012. Modern incursions of tropical radiolaria into the Arctic Ocean. Journal of Micropalaeontology 31:139158.

G. E. Boyajian 1991. Taxon age and selectivity of extinction. Paleobiology 17:4957.

J. T. Boyle , H. D. Sheets , S.-Y. Wu , D. Goldman , M. J. Melchin , R. A. Cooper , P. M. Sadler , and C. E. Mitchell . 2014. A re-examination of the contributions of biofacies and geographic range to extinction risk in Ordovician graptolites. GFF 136:3841.

P. J. Brenchley , J. D. Marshall , and C. J. Underwood . 2001. Do all mass extinction represent an ecological crisis? Evidence from the Late Ordovician. Geologic Journal 36:329340.

P. W. Bretsky 1973. Evolutionary patterns in the Paleozoic Bivalvia: documentation and some theoretical considerations. Geological Society of America Bulletin 84:20792096.

J. H. Brown , G. C. Stevens , and D. M. Kaufman . 1996. The geographic range: size, shape, boundaries, and internal structure. Annual Review of Ecological Systematics 27:597623.

M. A. Burgman , and J. C. Fox . 2003. Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning. Animal Conservation 6:1928.

M. Calner , O. Lehnert , and J. Nõlvak . 2010. Palaeokarst evidence for widespread regression and subaerial exposure in the middle Katian (Upper Ordovician) of Baltoscandia: significance for global climate. Palaeogeography, Paleoclimatology, Paleoecology 296:235247.

J. L. Christiansen , and S. Stouge . 1999. Oceanic circulation as an element in palaeogeographical reconstructions: the Arenig (early Ordovician) as an example. Terra Nova 11:7378.

J. L. Cisne , and G. O. Chandlee . 1982. Taconic foreland basin graptolites: age zonation, depth zonation, and use in ecostratigraphic correlation. Lethaia 15:343363.

R. A. Cooper 1999. Ecostratigraphy, zonation and global correlation of earliest Ordovician planktic graptolites. Lethaia 32:116.

R. A. Cooper , and P. M. Sadler . 2010. Biofacies preference predicts extinction risk in Ordovician Graptolites. Paleobiology 36:167187.

R. A. Cooper , and P. M. Sadler . 2012. The Ordovician Period. Pp. 489555 in F. Gradstein, J. Ogg, M. Schmitz, and G. Ogg, eds. The Geologic Time Scale 2012. Elsevier, Oxford.

R. A. Cooper , R. A. Fortey , and K. Lindholm . 1991. Latitudinal and depth zonation of early Ordovician graptolites. Lethaia 24:199218.

R. A. Cooper , S. Rigby , D. K. Loydell , and D.E.B. Bates . 2012. Palaeoecology of the Graptoloidea. Earth-Science Reviews 112:2341.

R. A. Cooper , P. M. Sadler , A. Munnecke , and J. S. Crampton . 2014. Graptoloid evolutionary rates track Ordovician–Silurian global climate change. Geological Magazine 151:349364.

J. S. Crampton , R. A. Cooper , P. M. Sadler , and M. Foote . 2016. Greenhouse–icehouse transition in the Late Ordovician marks a step change in extinction regime in the marine plankton. Proceedings of the National Academy of Sciences USA 113:14981503.

A. M. Dunhill , and M. A. Wills . 2015. Geographic range did not confer resilience to extinction in terrestrial vertebrates at the end-Triassic crisis. Nature Communications 6:18.

A. M. Dunhill , B. Hannisdal , and M. J. Benton . 2014. Disentangling rock record bias and common-cause from redundancy in the British fossil record. Nature Communications 5:19.

D. H. Erwin 1989. Regional paleoecology of Permian gastropod genera, southwestern United States and the end-Permian mass extinction. Palaios 4:424438.

S. Finnegan , J. L. Payne , and S. C. Wang . 2008. The Red Queen revisited: reevaluating the age selectivity of Phanerozoic marine genus extinctions. Paleobiology 34:318341.

S. Finnegan , N. A. Heim , S. E. Peters , and W. W. Fischer . 2012. Climate change and the selective signature of the Late Ordovician mass extinction. Proceedings of the National Academy of Sciences USA 109:68296834.

S. C. Finney 1986. Graptolite biofacies and correlation of eustatic, subsidence, and tectonic events in the Middle to Upper Ordovician of North America. Palaios 1:435461.

S. C. Finney , and W. B. N. Berry . 1997. New perspectives on graptolite distributions and their use as indicators of platform margin dynamics. Geology 25:919922.

S. C. Finney , W. B. N. Berry , and J. D. Cooper . 2007. The influence of denitrifying seawater on graptolite extinction and diversification during the Hirnantian (latest Ordovician) mass extinction event. Lethaia 40:281291.

W. B. Foden , S. H. M. Butchart , S. N. Stuart , J.-C. Vié , H. R. Akçakaya , A. Angulo , L. M. DeVantier , A. Gutsche , E. Turak , L. Cao , S. D. Donner , V. Katariya , R. Bernard , R. A. Holland , A. F. Hughes , S. E. O’Hanlon , S. T. Garnett , Ç. H. Şekercioğlu , and G. M. Mace . 2013. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians, and corals. PLoS ONE 8:e65427.

M. Foote 2000. Origination and extinction components of taxonomic diversity: general problems. Paleobiology 26:74102.

M. Foote 2003. Origination and extinction through the Phanerozoic: a new approach. Journal of Geology 111:125148.

M. Foote 2007a. Extinction and quiescence in marine animal genera. Paleobiology 33:261272.

M. Foote 2007b. Symmetric waxing and waning of marine invertebrate genera. Paleobiology 33:517529.

M. Foote , and A. I. Miller . 2013. Determinant of early survival in marine animal genera. Paleobiology 39:171192.

M. Foote , J. S. Crampton , A. G. Beu , B. A. Marshall , R. A. Cooper , P. A. Maxwell , and I. Matcham . 2007. Rise and fall of species occupancy in Cenozoic fossil mollusks. Science 318:11311134.

M. Foote , J. S. Crampton , A. G. Beau , and R. A. Cooper . 2008. On the bidirectional relationship between geography range and taxonomic duration. Paleobiology 34:421433.

R. A. Fortey , and L. R. M. Cocks . 1986. Marginal faunal belts and their structural implications, with examples from the Lower Palaeozoic. Journal of the Geological Society, London 143:151160.

K. J. Gaston 1994. Geographic range sizes. Ecography 17:198205.

K. J. Gaston , and R. A. Fuller . 2009. The size of species’ geographic ranges. Journal of Applied Ecology 46:19.

K. J. Gaston , R. M. Quinn , S. Wood , and H. R. Arnold . 1996. Measure of geographic range size: the effect of sample size. Ecography 19:259268.

E. Goetze 2011. Population differentiation in the open sea: insights from the pelagic copepod Pleuromamma xiphas . Integrative and Comparative Biology 51:580597.

D. Goldman , and S.-Y. Wu . 2010. Paleogeographic, paleoceanographic, and tectonic controls on early Late Ordovician graptolite diversity patterns. In S. C. Finney, and W. B. N. Berry, eds. The Ordovician Earth system. Geological Society of America Special Paper 466:149161.

D. Goldman , S. M. Bergström , H. D. Sheets , and C. Pantle . 2013a. A CONOP9 composite taxon range chart for Ordovician conodonts from Baltoscandia: a framework for biostratigraphic correlation and maximum-likelihood biodiversity analyses. GFF 136:342354.

R. L. Graham , and P. Hell . 1985. On the history of the minimum spanning tree problem. Annals of the History of Computing 7:4357.

T. A. Hansen 1980. Influence of larval dispersal and geographic distribution on species longevity in neogastropods. Paleobiology 6:193207.

P. G. Harnik 2011. Direct and indirect effects of biological factors on extinction risk in fossil bivalves. Proceedings of the National Academy of Sciences USA 108:1359413599.

D. A. T. Harper , and J.-Y. Rong . 2001. Paleozoic brachiopod extinctions survival and recovery: patterns within the rhynchonelliformeans. Geological Journal 36:317328.

P. G. Harnik , C. Simpson , and J. L. Payne . 2012. Long-term differences in extinction risk among the seven forms of rarity. Proceedings of the Royal Society of London B 279:49694976.

N. A. Heim , and S. E. Peters . 2011. Regional environmental breadth predicts geographic range and longevity in fossil marine genera. PLoS ONE 6:112.

A. D. Herrmann , B. J. Haupt , M. E. Patzkowsky , D. Seidov , and R. L. Slingerland . 2004. Response of Late Ordovician paleoceanography to changes in sea level, continental drift, and atmospheric pCO2: potential causes for long-term cooling and glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 210:385401.

A. Hoffman , and J. A. Kitchell . 1984. Evolution in a pelagic planktic system: a paleobiologic test of multispecies evolution. Paleobiology 10:933.

S. M. Holland , and M. E. Patzkowsky . 2002. Stratigraphic variation in the timing of first and last occurrences. Palaios 17:134146.

M. J. Hopkins 2011. How species longevity, interspecific morphological variation, and geographical range size are related: a comparison using Late Cambrian trilobites. Evolution 65:32533273.

D. Jablonski 1986. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129133.

D. Jablonski 1987. Heritability at the species level: analysis of geographic ranges of Cretaceous mollusks. Science 238:360363.

D. Jablonski 2005. Mass extinctions and macroevolution. Paleobiology 31:192210.

D. Jablonski 2008. Extinction and the spatial dynamics of biodiversity. Proceedings of the National Academy of Sciences USA 105:1152811538.

D. Jablonski , and G. Hunt . 2006. Larval ecology, geographic range, and species survivorship in Cretaceous mollusks: organisms versus species-level explanations. American Naturalist 168:556564.

D. Jablonski , and D. M. Raup . 1995. Selectivity of end-Cretaceous marine bivalve extinctions. Science 268:389391.

D. K. Jacobs , and D. R. Lindberg . 1998. Oxygen and evolutionary patterns in the sea: onshore/offshore trends and recent recruitment of deep-sea faunas. Proceedings of the National Academy of Sciences USA 95:93969401.

C. H. Jeffery 2001. Heart urchins at the Cretaceous/Tertiary boundary: a tale of two clades. Paleobiology 27:140158.

T. W. Kammer , T. K. Baumiller , and W. I. Ausich . 1997. Species longevity as a function of niche breadth: evidence from fossil crinoids. Geology 25:219222.

W. Kiessling , and M. Aberhan . 2007. Geographical distributions and extinction risk: lessons from Triassic–Jurassic marine benthic organisms. Journal of Biogeography 34:14731489.

A. Le Hérissé , R. Gourvennec , and R. Wicander . 1997. Biogeography of the Late Silurian and Early Devonian acritarchs and prasinophytes. Review of Palaeobotany and Palynology 98:105124.

S. E. Lester , and B. I. Ruttenburg . 2005. The relationship between pelagic, larval duration and range size in tropical reef fishes: a synthetic analysis. Proceedings of the Royal Society of London B 272:585591.

S. E. Lester , B. I. Ruttenburg , S. D. Gaines , and B. P. Kinlan . 2007. The relationship between dispersal ability and geographic range size. Ecology Letters 10:745758.

D. A. Levin , and A. C. Wilson . 1976. Rates of evolution in seed plants: net increase in diversity of chromosome numbers and species numbers through time. Proceedings of the National Academy of Sciences USA 73:20862090.

L. H. Liow 2007. Does versatility as measured by geographic range, bathymetric range and morphological variability contribute to taxon longevity? Global Ecology and Biogeography 16:117128.

L. H. Liow , and N. C. Stenseth . 2007. The rise and fall of species: implications for macroevolutionary and macroecological studies. Proceedings of the Royal Society of London B 274:27452752.

L. H. Liow , M. Fortelius , K. Lintulaakso , H. Mannila , and N. C. Stenseth . 2009. Lower extinction risk in sleep-or-hide mammals. American Naturalist 173:264272.

C. A. McRoberts , and C. R. Newton . 1995. Selective extinction among end-Triassic European bivalves. Geology 23:102104.

M. J. Melchin , C. E. Mitchell , A. Naczk-Cameron , J. X. Fan , and J. Loxton . 2011. Phylogeny and adaptive radiation of the Neograptina (Graptoloidea) during the Hirnantian mass extinction and Silurian recovery. Proceedings of the Yorkshire Geological Society 58:281309.

M. J. Melchin , P. M. Sadler , B. D. Cramer , R. A. Cooper , F. M. Gradstein , and Ø. Hammer . 2012. The Silurian Period. Pp. 525558 in F. Gradstein, J. Ogg, M. Schmitz, and G. Ogg, eds. The Geologic Time Scale 2012. Elsevier, Oxford.

M. J. Melchin , C. E. Mitchell , C. Holmden , and P. Štorch . 2013. Environmental changes in the Late Ordovician-early Silurian: review and new insights from black shale and nitrogen isotopes. Geological Society of America Bulletin 125:16351670.

B.-H. Mevik , and R. Wehrens . 2007. The pls package: principal component and partial least squares regression in R. Journal of Statistical Software 18:124.

A. I. Miller 1997. A new look at age and area: the geographic and environmental expansion of genera during the Ordovician radiation. Paleobiology 23:410419.

H. T. Mullins , J. B. Thompson , K. McDougall , and T. L. Vercoutere . 1985. Oxygen-minimum zone edge effects: evidence from the central California coastal upwelling system. Geology 13:491494.

R. D. Norris 2000. Pelagic species diversity, biogeography, and evolution. Paleobiology 26:236258.

W. C. Parker , A. Feldman , and A. J. Arnold . 1999. Paleobiogeographic patterns in the morphological diversification of the Neogene planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology 152:114.

J. L. Payne , and S. Finnegan . 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:1050610511.

S. E. Peters 2006. Genus extinction, origination, and the duration of sedimentary hiatuses. Paleobiology 32:387407.

S. E. Peters , and M. Foote . 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583601.

M. J. Polcyn , L. L. Jacobs , R. Araújo , and A. S. Schulp . 2013. Physical drivers of mosasaur evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 400:1727.

M. C. Pope , and J. B. Steffen . 2003. Widespread, prolonged late Middle to Late Ordovician upwelling in North America: a proxy record of glaciation? Geology 31:6366.

M. G. Powell 2007. Geographic range and genus longevity of Late Paleozoic brachiopods. Paleobiology 33:530546.

D. M. Raup , and J. J. Sepkoski . 1982. Mass extinction in the marine fossil record. Science 215:15011503.

E. Rapoport 1982. Areography: geographical strategies of species. Pergamon, Oxford.

D. B. R. Robertson , P. J. Brenchley , and A.W. Owen . 1991. Ecological disruption close to the Ordovician–Silurian boundary. Historical Biology 5:131144.

A. L. Rode , and B. S. Lieberman . 2004. Using GIS to unlock the interactions between biogeography, environment, and evolution in Middle and Late Devonian brachiopods and bivalves. Palaeogeography, Palaeoclimatology, Palaeoecology 211:345359.

A. D. Rogers 2000. The role of the oceanic oxygen minima in generating biodiversity in the deep sea. Deep-Sea Research II 47:119148.

M. P. Russell , and D. R. Lindberg . 1988. Real and random patterns associated with molluscan spatial and temporal distributions. Paleobiology 14:322330.

P. M. Sadler , W. G. Kemple , and M. A. Kooser . 2003. Contents of the compact disk—CONOP9 programs for solving the stratigraphic correlation and seriation problems as constrained optimization. In P. J. Harries, ed. High resolution approaches in stratigraphic paleontology. Topics in Geobiology 21:461465. Kluwer Academic, Dordrecht, Netherlands.

P. M. Sadler , R. A. Cooper , and M. J. Melchin . 2009. High-resolution, early Paleozoic (Ordovician–Silurian) time scales. Geological Society of America Bulletin 121:887906.

P. M. Sadler , R. A. Cooper , and M. J. Melchin . 2011. Sequencing the graptolite clade: building a global diversity curve from local range charts, regional time-charts and global time-lines. Proceedings of the Yorkshire Geological Society 58:329343.

A.-K. Seghouane 2011. New AIC corrected variants for multivariate linear regression model selection. IEEE Transactions on Aerospace and Electronic Systems 47:11541164.

T. Servais , A. W. Owen , D. A. T. Harper , B. Kröger , and A. Munnecke . 2010. The Great Ordovician Biodiversification Event (GOBE): the palaeoecological dimension. Palaeogeography, Palaeoclimatology, Palaeoecology 294:99119.

P. M. Sheehan , and P. J. Coorough . 1990. Brachiopod zoogeography across the Ordovician–Silurian extinction event. Geological Society of London Memoir 12:181187.

C. Simpson , and P. G. Harnik . 2009. Assessing the role of abundance in marine bivalve extinction over the post-Paleozoic. Paleobiology 35:631647.

A. B. Smith , and C. H. Jeffery . 2000. Changes in the diversity, taxic composition and life-history patterns of echinoids over the past 145 million years. Pp. 181194 in S. J. Culver, and P. F. Rawson, eds. Biotic response to global change: the last 145 million years. Cambridge University Press, Cambridge.

A. B. Smith , and A. J. McGowan . 2007. The shape of the Phanerozoic marine paleodiversity curve: how much can be predicted from the sedimentary rock record of western Europe? Palaeontology 50:765774.

S. M. Stanley 1986. Population size, extinction, and speciation: the fission effect in Neogene bivalvia. Paleobiology 12:89110.

S. M. Stanley , K. L. Wetmore , and J. P. Kennett . 1988. Macroevolutionary differences between the two major clades of Neogene planktonic foraminifera. Paleobiology 14:235249.

M. E. Steeman , M. B. Hebsgaard , R. E. Fordyce , S. W. Y. Ho , D. L. Rabosky , R. Nielsen , C. Rahbek , H. Glenner , M. V. Sørensen , and E. Willerslev . 2009. Radiation of extant cetaceans driven by restructuring of the oceans. Systematic Biology 58:573585.

J. M. Sunday , A. E. Bates , and N. K. Dulvy . 2011. Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society of London B 278:18231830.

T. H. Torsvik , and L. R. M. Cocks . 2013. New global palaeogeographical reconstructions for the Early Paleozoic and their generation. Geological Society of London Memoir 38:524.

J. A. Trotter , I. S. Williams , C. R. Barnes , C. Lécuyer , and R. S. Nicoll . 2008. Did cooling trigger Ordovician biodiversification? Evidence from conodont thermometry. Science 321:550554.

T. R. A. Vandenbroucke , H. A. Armstrong , M. Williams , J. A. Zalasiewicz , and K. Sabbe . 2009. Ground-truthing Late Ordovician climate models using the palaeobiogeography of graptolites. Paleoceanography 24:119.

T. R. A. Vandenbroucke , H. A. Armstrong , M. Williams , F. Paris , J. A. Zalasiewicz , K. Sabbe , J. Nõlvak , T. J. Challands , J. Verniers , and T. Servais . 2010. Polar front shift and atmospheric CO2 during the glacial maximum of the Early Paleozoic icehouse. Proceedings of the National Academy of Sciences USA 107:1498314986.

D. A. Vilhena , E. B. Harris , C. T. Bergstrom , M. E. Maliska , P. D. Ward , C. A. Sidor , C. A. E. Strömberg , and G. P. Wilson . 2013. Bivalve network reveals latitudinal selectivity gradient at the end-Cretaceous mass extinction. Scientific Reports 3:15.

P. D. Wall , L. C. Ivany , and B. H. Wilkinson . 2009. Revisiting Raup: exploring the influence of outcrop area on diversity in light of modern sample-standardization techniques. Paleobiology 35:146167.

S. A. Young , M. R. Saltzman , K. A. Foland , J. S. Linder , and L. R. Kump . 2009. A major drop in seawater 87Sr/86Sr during the Middle Ordovician (Darriwilian): links to volcanism and climate? Geology 37:951954.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Paleobiology
  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 11
Total number of PDF views: 67 *
Loading metrics...

Abstract views

Total abstract views: 370 *
Loading metrics...

* Views captured on Cambridge Core between 20th December 2016 - 25th May 2017. This data will be updated every 24 hours.