Skip to main content
×
×
Home

The Proterozoic Record of Eukaryotes

  • Phoebe A. Cohen (a1) and Francis A. Macdonald (a2)
Abstract

Proterozoic strata host evidence of global “Snowball Earth” glaciations, large perturbations to the carbon cycle, proposed changes in the redox state of oceans, the diversification of microscopic eukaryotes, and the rise of metazoans. Over the past half century, the number of fossils described from Proterozoic rocks has increased exponentially. These discoveries have occurred alongside an increased understanding of the Proterozoic Earth system and the geological context of fossil occurrences, including improved age constraints. However, the evaluation of relationships between Proterozoic environmental change and fossil diversity has been hampered by several factors, particularly lithological and taphonomic biases. Here we compile and analyze the current record of eukaryotic fossils in Proterozoic strata to assess the effect of biases and better constrain diversity through time. Our results show that mean within assemblage diversity increases through the Proterozoic Eon due to an increase in high diversity assemblages, and that this trend is robust to various external factors including lithology and paleogeographic location. In addition, assemblage composition changes dramatically through time. Most notably, robust recalcitrant taxa appear in the early Neoproterozoic Era, only to disappear by the beginning of the Ediacaran Period. Within assemblage diversity is significantly lower in the Cryogenian Period than in the preceding and following intervals, but the short duration of the nonglacial interlude and unusual depositional conditions may present additional biases. In general, large scale patterns of diversity are robust while smaller scale patterns are difficult to discern through the lens of lithological, taphonomic, and geographic variability.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The Proterozoic Record of Eukaryotes
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The Proterozoic Record of Eukaryotes
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The Proterozoic Record of Eukaryotes
      Available formats
      ×
Copyright
All rights reserved. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
Hide All
Allison, C. W., and Hilgert, J. W.. 1986. Scale microfossils from the Early Cambrian of northwest Canada. Journal of Paleontology 60:9731015.
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi, C. C.. 2008. Phanerozoic Trends in the Global Diversity of Marine Invertebrates. Science 321:97100.
Anbar, A. D., and Knoll, A.H.. 2002. Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? Science 297:11371142.
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.
Berner, R. A. 1973. Phosphate removal from sea water by adsorption on volcanogenic ferric oxides. Earth and Planetary Science Letters 18:7786.
Boenigk, J., Pfandl, K., Garstecki, T., Harms, H., Novarino, G., and Chatzinotas, A.. 2006. Evidence for Geographic Isolation and Signs of Endemism within a Protistan Morphospecies. Applied and Environmental Microbiology 72:51595164.
Bosak, T., Lahr, D. J. G., Pruss, S. B., Macdonald, F. A., Gooday, A. J., Dalton, L., and Matys, E. D.. 2011a. Possible early foraminiferans in post-Sturtian (716-635 Ma) cap carbonates. Geology 40:6770.
Bosak, T., Lahr, D. J. G., Pruss, S. B., Macdonald, F. A., Dalton, L., and Matys, E.. 2011b. Agglutinated tests in post-Sturtian cap carbonates of Namibia and Mongolia. Earth and Planetary Science Letters 308:2940.
Bosak, T., Macdonald, F., Lahr, D., and Matys, E.. 2011c. Putative Cryogenian ciliates from Mongolia. Geology 39:11231126.
Bradley, D. C. 2008. Passive margins through earth history. Earth Science Reviews 91:126.
Butterfield, N. J. 2004. A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion. Paleobiology 30:231252.
Butterfield, N. J 2005. Probable proterozoic fungi. Paleobiology 31:165182.
Butterfield, N. J 2009. Modes of pre-Ediacaran multicellularity. Precambrian Research 173:111.
Butterfield, N. J 2000. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Journal of Paleontology 26:386404.
Butterfield, N. J., Knoll, A. H., and Swett, K.. 1994. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Lethaia 27:7676.
Calver, C. R., Grey, K., and Laan, M.. 2010. The “string of beads” fossil (Horodyskia) in the mid-Proterozoic of Tasmania. Precambrian Research 180:1825.
Casteleyn, G., Leliaert, F., Backeljau, T., Debeer, A.-E., Kotaki, Y., Rhodes, L., Lundholm, N., Sabbe, K., and Vyverman, W.. 2010. Limits to gene flow in a cosmopolitan marine planktonic diatom. Proceedings of the National Academy of Sciences USA 107:1295212957.
Chase, J. M., and Leibold, M. A.. 2002. Spatial scale dictates the productivity–biodiversity relationship. Nature 416:427430.
Cloud, P. E. 1968. Atmospheric and Hydrospheric Evolution on the Primitive Earth Both secular accretion and biological and geochemical processes have affected earth's volatile envelope. Science 160:729736.
Cohen, P. A., Knoll, A. H., and Kodner, R. B.. 2009. Large spinose microfossils in Ediacaran rocks as resting stages of early animals. Proceedings of the National Academy of Sciences 106:65196524.
Cohen, P. A., and Knoll, A. H.. 2012. Scale Microfossils from the Mid-Neoproterozoic Fifteenmile Group, Yukon Territory. Journal of Paleontology 86:775800.
Cohen, P. A., Schopf, J. W., Butterfield, N. J., Kudryavtsev, A. B., and Macdonald, F. A.. 2011. Phosphate biomineralization in mid-Neoproterozoic protists. Geology 39:539542.
Cohen, P. A., Macdonald, F.A., Pruss, S., Matys, E., and Bosak, T.. 2015. Fossils of putative marine algae from the Cryogenian glacial interlude of Mongolia. Palaios 30:238247.
Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A., and Jin, Y.. 2005. U-Pb ages from the neoproterozoic Doushantuo Formation, China. Science 308:9598.
Corsetti, F. A., Awramik, S. M., and Pierce, D.. 2003. A complex microbiota from snowball Earth times: microfossils from the Neoproterozoic Kingston Peak Formation, Death Valley, USA. Proceedings of the National Academy of Sciences 100:43994404.
Creveling, J. R., Johnston, D. T., Poulton, S. W., Kotrc, B., März, C., Schrag, D. P., and Knoll, A. H.. 2013. Phosphorus sources for phosphatic Cambrian carbonates. Geological Society of America Bulletin 126:145163.
Dalton, T. Bosak, Macdonald, F. A., Lahr, D. J. G., and Pruss, S. B.. 2013. Preservational and Morphological Variability of Assemblages of Agglutinated Eukaryotes in Cryogenian Cap Carbonates of Northern Namibia. Palaios 28:6779.
Dalziel, I. W. D. 1997. Neoproterozoic-Paleozoic geography and tectonics: Review, hypothesis, environmental speculation. Geological Society of America Bulletin 109:1642.
Dupont, C. L., Butcher, A., Valas, R. E., Bourne, P. E., and Caetano-Anollés, G.. 2010. History of biological metal utilization inferred through phylogenomic analysis of protein structures. Proceedings of the National Academy of Sciences 107:1056710572.
Ernst, R. E., Wingate, M., Buchan, K. L., and Li, Z. X.. 2008. Global record of 1600–700Ma Large Igneous Provinces (LIPs): implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambrian Research 160:159178.
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D., and Peterson, K. J.. 2011. The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals. Science 334:10911097.
Evans, D. A. D. 2013. Reconstructing pre-Pangean supercontinents. Geological Society of America Bulletin 125:17351751.
Fenchel, T. 1968. The ecology of marine microbenthos II. The food of marine benthic ciliates. Ophelia 5:73121.
Foissner, W., Chao, A., and Katz, L. A.. 2007. Diversity and geographic distribution of ciliates (Protista: Ciliophora). Biodiversity and Conservation 17:345363.
Halverson, G. P., Wade, B. P., Hurtgen, M. T., and Barovich, K. M.. 2010. Neoproterozoic chemostratigraphy. Precambrian Research 182:337350.
Halverson, G. P., Cox, G., Hurtgen, M. T., Sansjofre, P., Kunzmann, M., Strauss, J. V., and Macdonald, F. A. 2014. A continental flood basalt driver for Neoproterozoic climate and oxygenation. Geological Society of America Abstracts with Programs, 256256.
Han, B.-P., Wang, T., Lin, Q.-Q., and Dumont, H. J.. 2007. Carnivory and active hunting by the planktonic testate amoeba Difflugia tuberspinifera. Hydrobiologia 596:197201.
Heinz, P., and Geslin, E.. 2012. Ecological and Biological Response of Benthic Foraminifera Under Oxygen-Depleted Conditions: Evidence from Laboratory Approaches. Pp. 287303in A. V. Altenbach, J. M. Bernhard, and J. Seckbach, eds. Anoxia Vol. 21. Springer, Netherlands.
Hoffman, P. F. 1998. A Neoproterozoic Snowball Earth. Science 281:13421346.
Huntley, J. W., and Kowalewski, M.. 2007. Strong coupling of predation intensity and diversity in the Phanerozoic fossil record. Proceedings of the National Academy of Sciences 104:1500615010.
Huntley, J. W., Xiao, S., and Kowalewski, M.. 2006. 1.3 Billion years of acritarch history: An empirical morphospace approach. Precambrian Research 144:5268.
Javaux, E. J., Knoll, A. H., and Walter, M. R.. 2004. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology 2:121132.
Javaux, E. J., Knoll, A. H., and Walter, M.. 2003. Recognizing and interpreting the fossils of early eukaryotes. Origins of Life and Evolution of the Biosphere 33:7594.
Johnston, D. T., Poulton, S. W., Dehler, C., Porter, S., Husson, J., Canfield, D. E., and Knoll, A. H.. 2010. An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA. Earth and Planetary Science Letters 290:6473.
Johnston, D. T., Poulton, S. W., Tosca, N. J., O'Brien, T., Halverson, G. P., Schrag, D. P., and Macdonald, F. A.. 2013. Search for an oxygenation event in the fossiliferous Ediacaran of Northwest Canada. Chemical Geology 362:273286.
Kah, L. C., and Bartley, J. K.. 2011. Protracted oxygenation of the Proterozoic biosphere. International Geology Review 53:14241442.
Kaufman, A. J., Knoll, A. H., and Awramik, S. M.. 1992. Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions: Upper Tindir Group, northwestern Canada, as a test case. Geology 20:181185.
Knoll, A. H. 1999. Early Animal Evolution: Emerging Views from Comparative Biology and Geology. Science 284:21292137.
Knoll, A. H 2003. Biomineralization and evolutionary history. Reviews in Mineralogy and Geochemistry 54:329356.
Knoll, A. H., and Sperling, E. A.. 2014. Oxygen and animals in Earth history. Proceedings of the National Academy of Sciences 111:39073908.
Knoll, A. H., Javaux, E. J., Hewitt, D., and Cohen, P.. 2006. Eukaryotic organisms in Proterozoic oceans. Philosophical Transactions of the Royal Society B: Biological Sciences 361:10231038.
Kowalewski, M., and Novack-Gottshall, P. M.. 2010. Resampling methods in paleontology. Pp. 1954in J. Alroy, and G. Hunt, eds. Quantitative Methods in Paleobiology Vol. 16. The Paleontological Society, Chicago.
Laakso, T. A., and Schrag, D. P.. 2014. Regulation of atmospheric oxygen during the Proterozoic. Earth and Planetary Science Letters 388:8191.
Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields-Zhou, G. A., and Butterfield, N. J.. 2014. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience 7:257265.
Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., De Waele, B., Ernst, R. E., Fitzsimons, I. C. W., Fuck, R. A., Gladkochub, D. P., Jacobs, J., Karlstrom, K. E., Lu, S., Natapov, L. M., Pease, V., Pisarevsky, S. A., Thrane, K., and Vernikovsky, V.. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research 160:179210.
Li, Z. X., Li, X. H., Kinny, P. D., and Wang, J.. 1999. The breakup of Rodinia: did it start with a mantle plume beneath South China? Earth and Planetary Science Letters 173:171181.
Li, Z.-X., Evans, D. A. D., and Halverson, G.. 2013. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland. Sedimentary Geology, 163.
Love, G. D., Grosjean, E., Stalvies, C., Fike, D. A., Grotzinger, J. P., Bradley, A. S., Kelly, A. E., Bhatia, M., Meredith, W., Snape, C. E., Bowring, S. A., Condon, D. J., and Summons, R. E.. 2008. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457:718721.
Lyons, T. W., Reinhard, C. T., and Planavsky, N. J.. 2014. The rise of oxygen in Earth’s earlyocean and atmosphere. Nature 506:307315.
Macdonald, F. A., Prave, A. R., Petterson, R., Smith, E. F., Pruss, S. B., Oates, K., Waechter, F., Trotzuk, D., and Fallick, A. E.. 2013. The Laurentian record of Neoproterozoic glaciation, tectonism, and eukaryotic evolution in Death Valley, California. Geological Society of America Bulletin 125:12031223.
Macdonald, F. A., and Cohen, P. A.. 2011. Chapter 35 The Tatonduk inlier, Alaska-Yukon border. Geological Society, London, Memoirs 36:389396.
Macdonald, F. A., Schmitz, M. D., Crowley, J. L., Roots, C. F., Jones, D. S., Maloof, A. C., Strauss, J. V., Cohen, P. A., Johnston, D. T., and Schrag, D. P.. 2010b. Calibrating the Cryogenian. Science 327:12411243.
Maliva, R. G., Knoll, A. H., and Siever, R.. 1989. Secular change in chert distribution: a reflection of evolving biological participation in the silica cycle. Palaios 4:519532.
Maloof, A. C., Rose, C. V., Beach, R., Samuels, B. M., Calmet, C. C., Erwin, D. H., Poirier, G. R., Yao, N., and Simons, F. J.. 2010. Possible animal-body fossils in pre-Marinoan limestones from South Australia. Nature 3:653659.
Marshall, C. R. 2006. Explaining the Cambrian “explosion” of animals. Annual Review of Earth and Planetary Sciences 34:355384.
Mills, D. B., Ward, L. M., Jones, C., Sweeten, B., Forth, M., Treusch, A. H., and Canfield, D. E.. 2014. Oxygen requirements of the earliest animals. Proceedings of the National Academy of Sciences USA 111:41684172.
Moczydłowska, M. 2005. Taxonomic review of some Ediacaran acritarchs from the Siberian Platform. Precambrian Research 136:283307.
Moczydłowska, M., Schopf, J. W., and Willman, S.. 2009. Micro- and nano-scale ultrastructure of cell walls in Cryogenian microfossils: revealing their biological affinity. Lethaia 43:129136.
Och, L. M., and Shields-Zhou, G. A.. 2012. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth Science Reviews 110:2657.
Parfrey, L. W., Lahr, D. J., Knoll, A. H., and Katz, L. A.. 2011. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proceedings of the National Academy of Sciences 108:1362413629.
Partin, C. A., Bekker, A., Planavsky, N. J., Scott, C. T., Gill, B. C., Li, C., Podkovyrov, V., Maslov, A., Konhauser, K. O., Lalonde, S. V., Love, G. D., Poulton, S. W., and Lyons, T. W.. 2013. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth and Planetary Science Letters 369–370:284293.
Peters, S. E., and Heim, N. A.. 2010. The geological completeness of paleontological sampling in North America. Paleobiology 36:6179.
Peterson, K. J., Lyons, J. B., Nowak, K. S., Takacs, C. M., Wargo, M. J., and McPeek, M. A.. 2004. Estimating metazoan divergence times with a molecular clock. Proceedings of the National Academy of Sciences 101:65366541.
Planavsky, N. J., Reinhard, C. T., Wang, X., Thomson, D., McGoldrick, P., Rainbird, R. H., Johnson, T., Fischer, W. W., and Lyons, T. W.. 2014. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346:635638.
Planavsky, N. J., Rouxel, O. J., Bekker, A., Lalonde, S. V., Konhauser, K. O., Reinhard, C. T., and Lyons, T. W.. 2010. The evolution of the marine phosphate reservoir. Nature 467:10881090.
Porter, S. 2011. The rise of predators. Geology 39:607608.
Porter, S. M. 2004. Closing the phosphatization window: testing for the influence of taphonomic megabias on the pattern of small shelly fossil decline. Palaios 19:178183.
Porter, S. M., and Knoll, A. H.. 2000. Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology 26:360385.
Poulton, S. W., and Canfield, D. E.. 2011. Ferruginous Conditions: A Dominant Feature of the Ocean through Earth's History. Elements 7:107112.
Poulton, S. W., and Canfield, D. E.. 2006. Co-diagenesis of iron and phosphorus in hydrothermal sediments from the southern East Pacific Rise: Implications for the evaluation of paleoseawater phosphate concentrations. Geochimica et Cosmochimica Acta 70:58835898.
Pruss, S. B., Bosak, T., Macdonald, F. A., McLane, M., and Hoffman, P. F.. 2010. Microbial facies in a Sturtian cap carbonate, the Rasthof Formation, Otavi Group, northern Namibia. Precambrian Research 181:187198.
Rhoads, D. C., and Morse, J. W.. 1971. Evolutionary and ecologic significance of oxygen-deficient marine basins. Lethaia 4:413428.
Riedman, L. A., Porter, S. M., Halverson, G. P., Hurtgen, M. T., and Junium, C. K.. 2014. Organic-walled microfossil assemblages from glacial and interglacial Neoproterozoic units of Australia and Svalbard. Geology 42:10111014.
Roger, A. J., and Hug, L. A.. 2006. The origin and diversification of eukaryotes: problems with molecular phylogenetics and molecular clock estimation. Philosophical Transactions of the Royal Society B: Biological Sciences 361:10391054.
Ronov, A. B. 1982. The Earth's sedimentary shell (quantitative patterns of its structure, compositions, and evolution) The 20th VI Vernadskiy Lecture, March 12, 1978. International Geology Review 24:13131363.
Rooney, A. D., Macdonald, F. A., Strauss, J. V., Dudás, F. Ö., Hallmann, C., and Selby, D.. 2014. Re-Os geochronology and coupled Os-Sr isotope constraints on the Sturtian snowball Earth. Proceedings of the National Academy of Sciences 111:5156.
Rooney, A. D., Strauss, J. V., Brandon, A. D., and Macdonald, F. A.. 2015. A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations. Geology 43:459462.
Sahoo, S. K., Planavsky, N. J., Kendall, B., Wang, X., Shi, X., Scott, C., Anbar, A. D., Lyons, T. W., and Jiang, G.. 2013. Ocean oxygenation in the wake of the Marinoan glaciation. Nature 488:546549.
Saito, M. A., Sigman, D. M., and Morel, F. M. M.. 2003. The bioinorganic chemistry of the ancient ocean: the co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean–Proterozoic boundary? Inorganica Chimica Acta 356:308318.
Sayre, R. M. 1973. Theratromyxa weberi, An Amoeba Predatory on Plant-Parasitic Nematodes. Journal of Nematology 5:259264.
Schrag, D. P., Higgins, J. A., Macdonald, F. A., and Johnston, D. T.. 2013. Authigenic Carbonate and the History of the Global Carbon Cycle. Science 339:540543.
Scott, C., Lyons, T. W., Bekker, A., Shen, Y., Poulton, S. W., Chu, X., and Anbar, A. D.. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452:456459.
Sharma, M., and Shukla, Y.. 2009. Taxonomy and affinity of Early Mesoproterozoic megascopic helically coiled and related fossils from the Rohtas Formation, the Vindhyan Supergroup, India. Precambrian Research 173:105122.
Sperling, E. A., Wolock, C. J., Morgan, A. S., Gill, B. C., Kunzmann, M., Halverson, G. P., Macdonald, F. A., Knoll, A. H., and Johnston, D. T.. 2015. Statistical analysis of iron geochemical data suggests limited Late Proterozoic. Nature 523:451454.
Sperling, E. A., Halverson, G. P., Knoll, A. H., Macdonald, F. A., and Johnston, D. T.. 2013. A basin redox transect at the dawn of animal life. Earth and Planetary Science Letters 371:143155.
Sperling, E. A., Robinson, J. M., Pisani, D., and Peterson, K. J.. 2009. Where's the glass? Biomarkers, molecular clocks, and microRNAs suggest a 200-Myr missing Precambrian fossil record of siliceous sponge spicules. Geobiology 8:2436.
Squire, R. J., Campbell, I. H., Allen, C. M., and Wilson, C. J. L.. 2006. The Transgondwanan Supermountain: A trigger for the Cambrian explosion. Geochimica et Cosmochimica Acta 70:A608.
Srivastava, P. 2012. Problematic fossils from the Palaeo-Neoproterozoic Vindhyan Supergroup, India. Arabian Journal of Geosciences 5:14111422.
Stanley, S. M. 1973. An ecological theory for the sudden origin of multicellular life in the late Precambrian. Proceedings of the National Academy of Sciences 70:14861489.
Strauss, J. V., Rooney, A. D., Macdonald, F. A., Brandon, A. D., and Knoll, A. H.. 2014. 740 Ma vase-shaped microfossils from Yukon, Canada: Implications for Neoproterozoic chronology and biostratigraphy. Geology 42:659662.
Turner, E. C., and Kamber, B. S.. 2012. Arctic Bay Formation, Borden Basin, Nunavut (Canada): Basin evolution, black shale, and dissolved metal systematics in the Mesoproterozoic ocean. Precambrian Research 208:118.
Tziperman, E., Halevy, I., Johnston, D. T., Knoll, A. H., and Schrag, D. P.. 2011. Biologically induced initiation of Neoproterozoic snowball-Earth events. Proceedings of the National academy of Sciences 108:1509115096.
Valentine, J. W., and Moores, E. M.. 1970. Plate-tectonic regulation of faunal diversity and sea level: a model. Nature 228:657659.
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology, 245258.
Vidal, G., and Knoll, A. H.. 1983. Proterozoic plankton. Geological Society of America Memoir 161:265277.
Vidal, G., and Moczydłowska-Vidal, M.. 1997. Biodiversity, speciation, and extinction trends of Proterozoic and Cambrian phytoplankton. Paleobiology, 230246.
Vidal, G., Moczydtowska, M., and Rudavskaya, V. A.. 1993. Biostratigraphical implications of a Chuaria-Tavuia assemblage and associated acritarchs from the Neoproterozoic of Yakutia. Palaeontology 36:387387.
Wang, X.-C., Li, X.-H., Li, W.-X., Li, Z.-X., Liu, Y., Yang, Y.-H., Liang, X.-R., and Tu, X.-L.. 2008. The Bikou basalts in the northwestern Yangtze block, South China: Remnants of 820–810 Ma continental flood basalts? Geological Society of America Bulletin 120:14781492.
Wang, X.-C., Li, Z.-X., Li, X.-H., Li, Q.-L., and Zhang, Q.-R.. 2011. Geochemical and Hf–Nd isotope data of Nanhua rift sedimentary and volcaniclastic rocks indicate a Neoproterozoic continental flood basalt provenance. Lithos 127:427440.
Wingate, M. T., Campbell, I. H., Compston, W., and Gibson, G. M.. 1998. Ion microprobe U–Pb ages for Neoproterozoic basaltic magmatism in south-central Australia and implications for the breakup of Rodinia. Precambrian Research 87:135159.
Xiao, S., and Dong, L.. 2006. On the morphological and ecological history of Proterozoic macroalgae. Pp. 5790in S. Xiao, and A.J. Kaufman, eds. Neoproterozoic Geobiology and Paleobiology. Springer, Netherlands.
Yin, L., Zhu, M., Knoll, A. H., Yuan, X., Zhang, J., and Hu, J.. 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature 446:661663.
Zhou, C., Tucker, R., Xiao, S., Peng, Z., Yuan, X., and Chen, Z.. 2004. New constraints on the ages of Neoproterozoic glaciations in south China. Geology 32:437440.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Paleobiology
  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed