Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 9
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Ndondo, A. M. Munganga, J. M. W. Mwambakana, J. N. Saad-Roy, C. M. van den Driessche, P. and Walo, R. O. 2016. Analysis of a model of gambiense sleeping sickness in humans and cattle. Journal of Biological Dynamics, Vol. 10, Issue. 1, p. 347.

    Benoit, Joshua B. Attardo, Geoffrey M. Baumann, Aaron A. Michalkova, Veronika and Aksoy, Serap 2015. Adenotrophic Viviparity in Tsetse Flies: Potential for Population Control and as an Insect Model for Lactation. Annual Review of Entomology, Vol. 60, Issue. 1, p. 351.

    Crawford, Kira Lancaster, Aaleah Oh, Hyunju and Rychtář, Jan 2015. A voluntary use of insecticide-treated cattle can eliminate African sleeping sickness. Letters in Biomathematics, Vol. 2, Issue. 1, p. 91.

    Pandey, Abhishek Atkins, Katherine E. Bucheton, Bruno Camara, Mamadou Aksoy, Serap Galvani, Alison P. and Ndeffo-Mbah, Martial L. 2015. Evaluating long-term effectiveness of sleeping sickness control measures in Guinea. Parasites & Vectors, Vol. 8, Issue. 1,

    Rock, Kat S. Stone, Chris M. Hastings, Ian M. Keeling, Matt J. Torr, Steve J. and Chitnis, Nakul 2015. Mathematical Models for Neglected Tropical Diseases: Essential Tools for Control and Elimination, Part A.

    Rock, Kat S. Torr, Steve J. Lumbala, Crispin and Keeling, Matt J. 2015. Quantitative evaluation of the strategy to eliminate human African trypanosomiasis in the Democratic Republic of Congo. Parasites & Vectors, Vol. 8, Issue. 1,

    Hamidou Soumana, Illiassou Loriod, Béatrice Ravel, Sophie Tchicaya, Bernadette Simo, Gustave Rihet, Pascal and Geiger, Anne 2014. The transcriptional signatures of Sodalis glossinidius in the Glossina palpalis gambiensis flies negative for Trypanosoma brucei gambiense contrast with those of this symbiont in tsetse flies positive for the parasite: Possible involvement of a Sodalis-hosted prophage in fly Trypanosoma refractoriness?. Infection, Genetics and Evolution, Vol. 24, p. 41.

    Kajunguri, Damian Hargrove, John W. Ouifki, Rachid Mugisha, J. Y. T. Coleman, Paul G. and Welburn, Susan C. 2014. Modelling the Use of Insecticide-Treated Cattle to Control Tsetse and Trypanosoma brucei rhodesiense in a Multi-host Population. Bulletin of Mathematical Biology, Vol. 76, Issue. 3, p. 673.

    Aksoy, Serap Caccone, Adalgisa Galvani, Alison P. and Okedi, Loyce M. 2013. Glossina fuscipes populations provide insights for human African trypanosomiasis transmission in Uganda. Trends in Parasitology, Vol. 29, Issue. 8, p. 394.


A global sensitivity analysis for African sleeping sickness

  • DOI:
  • Published online: 16 November 2010

African sleeping sickness is a parasitic disease transmitted through the bites of tsetse flies of the genus Glossina. We constructed mechanistic models for the basic reproduction number, R0, of Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, respectively the causative agents of West and East African human sleeping sickness. We present global sensitivity analyses of these models that rank the importance of the biological parameters that may explain variation in R0, using parameter ranges based on literature, field data and expertize out of Uganda. For West African sleeping sickness, our results indicate that the proportion of bloodmeals taken from humans by Glossina fuscipes fuscipes is the most important factor, suggesting that differences in the exposure of humans to tsetse are fundamental to the distribution of T. b. gambiense. The second ranked parameter for T. b. gambiense and the highest ranked for T. b. rhodesiense was the proportion of Glossina refractory to infection. This finding underlines the possible implications of recent work showing that nutritionally stressed tsetse are more susceptible to trypanosome infection, and provides broad support for control strategies in development that are aimed at increasing refractoriness in tsetse flies. We note though that for T. b. rhodesiense the population parameters for tsetse – species composition, survival and abundance – were ranked almost as highly as the proportion refractory, and that the model assumed regular treatment of livestock with trypanocides as an established practice in the areas of Uganda experiencing East African sleeping sickness.

Corresponding author
*Corresponding author: School of Mathematical and Geospatial Sciences, Building 8, Level 9, Room 67, RMIT University, GPO Box 2476V, Melbourne, Victoria 3000, Australia. Tel: +61 (0)3 9925 2278. Fax: +61 (0)3 9925 2454. E-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

K. Akoda , P. Van den Bossche , E. A. Lyaruu , R. De Deken , T. Marcotty , M. Coosemans and J. Van den Abbeele (2009 a). Maturation of a Trypanosoma brucei infection to the infectious metacyclic stage is enhanced in nutritionally stressed tsetse flies. Journal of Medical Entomology 46, 14461449.

K. Akoda , J. Van den Abbeele , T. Marcotty , R. De Deken , I. Sidibe and P. Van den Bossche (2009 b). Nutritional stress of adult female tsetse flies (Diptera: Glossinidae) affects the susceptibility of their offspring to trypanosomal infections. Acta Tropica 111, 263267.

R. M. Anderson and R. M. May (1991). Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford, UK.

P.-H. Clausen , I. Adeyemi , B. Bauer , M. Breloeer , F. Salchow and C. Staak (1998). Host preferences of tsetse (Diptera: Glossinidae) based on bloodmeal identifications. Medical and Veterinary Entomology 12, 169180.

G. Cecchi , M. Paone , J. R. Franco , E. M. Fèvre , A. Diarra , J. A. Ruiz , R. C. Mattioli and P. P. Simarro (2009). Towards the Atlas of human African trypanosomiasis. International Journal of Health Geographics 8, 15. doi: 10.1186/1476-072X-8-15.

F. Checchi , J. A. N. Filipe , D. T. Haydon , D. Chandramohan and F. Chappuis (2008). Estimates of the duration of the early and late stages of gambiense sleeping sickness. BMC Infectious Diseases 8, 16. doi: 10.1186/1471-2334-8-16.

O. Diekmann , J. A. P. Heesterbeek and J. A. J. Metz (1990). On the definition and computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology 28, 365382.

R. V. Durvasula , A. Gumbs , A. Panackal , O. Kruglov , S. Aksoy , R. B. Merrifield , F. F. Richards and C. B. Beard (1997). Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proceedings of the National Academy of Sciences, USA 94, 32743278.

E. M. Fèvre , K. Picozzi , J. Jannin , S. C. Welburn and I. Maudlin (2006 a). Human African trypanosomiasis: epidemiology and control. Advances in Parasitology 61, 167221.

E. M. Fèvre , M. Odiit , P. G. Coleman , M. E. J. Woolhouse and S. C. Welburn (2008) Estimating the burden of rhodesiense sleeping sickness during an outbreak in Serere, eastern Uganda. BMC Public Health 8, 96. doi: 10.1186/1471-2458-8-96.

N. A. Hartemink , S. E. Randolph , S. Davis and J. A. P. Heesterbeek (2008). The basic reproduction number for complex disease systems: defining R0 for tick-borne infections. American Naturalist 171, 743754.

A. Matser , N. Hartemink , J. A. P. Heesterbeek , A. Galvani and S. Davis (2009). Elasticity analysis in epidemiology: an application to tick-borne infections. Ecology Letters 12, 18.

J. Pepin and H. A. Meda (2001). The epidemiology and control of human African trypanosomiasis. Advances in Parasitology 49, 71132.

S. Ravel , P. Grébaut , D. Cuisance , and G. Cuny (2003). Monitoring the developmental status of Trypanosoma brucei gambiense in the tsetse fly by means of PCR analysis of anal and saliva drops. Acta Tropica 88, 161165.

S. Ravel , D. Patrel , M. Koffi , V. Jamonneau and G. Cuny (2006). Cyclical transmission of Trypanosoma brucei gambiense in Glossina palpalis gambiensis displays great differences among field isolates. Acta Tropica 100, 151155.

R. V. Rio , Y. Hu and S. Aksoy (2004). Strategies of the home-team: symbioses exploited for vector-borne disease control. Trends in Microbiology 12, 325333.

M. G. Roberts and J. A. P. Heesterbeek (2003). A new method for estimating the effort required to control an infectious disease. Proceedings of the Royal Society of London, B 270, 13591364.

I. Roditi and M. J. Lehane (2008). Interactions between trypanosomes and tsetse flies. Current Opinion in Microbiology 11, 345351.

D. Rogers and S. Randolph (1991). Mortality rates and population density of tsetse flies correlated with satellite imagery. Nature, London 351, 739741.

M. A. Sanchez and S. M. Blower (1997). Uncertainty and sensitivity analysis of the basic reproductive rate. American Journal of Epidemiology 145, 11271137.

A. Saltelli (2002). Making the best use of model evaluations to compute sensitivity indices. Computer Physics Communication 145, 580597.

P. Van den Bossche , A. Ky-Zerbo , J. Brandt , T. Marcotty , S. Geerts and R. De Deken (2005). Transmissibility of Trypanosoma brucei during its development in cattle. Tropical Medicine and International Health 10, 833839.

C. Waiswa , K. Picozzi , E. Katunguka-Rwakishaya , W. Olaho-Mukani , R. A. Musoke and S. C. Welburn (2006). Glossinga fuscipes fuscipes in the trypanosomiasis endemic areas of south eastern Uganda: Apparent density, trypanosome infection rates and host feeding preferences. Acta Tropica 99, 2329.

S. C. Welburn , P. G. Coleman , I. Maudlin , E. M. Fèvre , M. Odiit and M. C. Eisler (2006). Crisis, what crisis? Control of Rhodesian sleeping sickness. Trends in Parasitology 22, 123128.

S. C. Welburn , E. M. Fèvre , P. G. Coleman , M. Odiit and I. Maudlin (2001). Sleeping sickness: a tale of two diseases. Trends in Parasitology 17, 1924.

S. C. Welburn and I. Maudlin (1999). Tsetse-trypanosome interactions: rites of passage. Parasitology Today 15, 399403.

S. C. Welburn , I. Maudlin and P. J. M. Milligan (1995). Trypanozoon: infectivity to humans is linked to reduced transmissibility in tsetse I. Comparison of human serum resistant and human serum sensitive field isolates. Experimental Parasitology 81, 409415.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *