Skip to main content

Applying predator-prey theory to modelling immune-mediated, within-host interspecific parasite interactions

  • ANDY FENTON (a1) and SARAH E. PERKINS (a2)

Predator-prey models are often applied to the interactions between host immunity and parasite growth. A key component of these models is the immune system's functional response, the relationship between immune activity and parasite load. Typically, models assume a simple, linear functional response. However, based on the mechanistic interactions between parasites and immunity we argue that alternative forms are more likely, resulting in very different predictions, ranging from parasite exclusion to chronic infection. By extending this framework to consider multiple infections we show that combinations of parasites eliciting different functional responses greatly affect community stability. Indeed, some parasites may stabilize other species that would be unstable if infecting alone. Therefore hosts' immune systems may have adapted to tolerate certain parasites, rather than clear them and risk erratic parasite dynamics. We urge for more detailed empirical information relating immune activity to parasite load to enable better predictions of the dynamic consequences of immune-mediated interspecific interactions within parasite communities.

Corresponding author
*Corresponding author: School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK. Tel: +0151 795 4473. Fax: +0151 795 4408. E-mail:
Hide All
Abbas, A. K., Murphy, K. M. and Sher, A. (1996). Functional diversity of helper T lymphocytes. Nature, London 383, 787793.
Antia, R., Bergstrom, C. T., Pilyugin, S. S., Kaech, S. M. and Ahmed, R. (2003). Models of CD8+ responses: 1. What is the antigen-independent proliferation program. Journal of Theoretical Biology 221, 585598.
Antia, R. and Koella, J. (2004). Theoretical immunology – Parasitic turncoat. Nature, London 429, 511513
Antia, R., Koella, J. C. and Perrot, V. (1996). Models of the within-host dynamics of persistent mycobacterial infections. Proceedings of the Royal Society of London, B 263, 257263.
Antia, R. and Lipsitch, M. (1997). Mathematical models of parasite responses to host immune defences. Parasitology 115, S155S167.
Bassetti, S., Bischoff, W. E. and Sherertz, R. J. (2005). Are SARS superspreaders cloud adults? Emerging Infectious Diseases 11, 637638.
Behnke, J. M. (2008). Structure in parasite component communities in wild rodents: predictability, stability, associations and interactions … or pure randomness? Parasitology 135, 751766.
Ben-Smith, A., Wahid, F. N., Lammas, D. A. and Behnke, J. M. (1999). The relationship between circulating and intestinal Heligmosomoides polygyrus-specific IgG(1) and IgA and resistance to primary infection. Parasite Immunology 21, 383395.
Bentwich, Z., Kalinkovich, A., Weisman, Z., Borkow, G., Beyers, N. and Beyers, A. D. (1999). Can eradication of helminthic infections change the face of AIDS and tuberculosis? Immunology Today 20, 485487.
Bonsall, M. B. and Hassell, M. P. (1997). Apparent competition structures ecological assemblages. Nature, London 388, 371373.
Borer, E. T., Anderson, K., Blanchette, C. A., Broitman, B., Cooper, S. D., Halpern, B. S., Seabloom, E. W. and Shurin, J. B. (2002). Topological approaches to food web analyses: a few modifications may improve our insights. Oikos 99, 397401.
Bottomley, C., Isham, V. and Basanez, M. G. (2007). Population biology of multispecies helminth infection: competition and coexistence. Journal of Theoretical Biology 244, 8195.
Brady, M. T., O'Neill, S. M., Dalton, J. P. and Mills, K. H. G. (1999). Fasciola hepatica suppresses a protective Th1 response against Bordetella pertussis. Infection and Immunity 67, 53725378.
Buric, N., Mudrinic, M. and Vasovic, N. (2001). Time delay in a basic model of the immune response. Chaos Solitons & Fractals 12, 483489.
Callard, R. E. and Yates, A. J. (2005). Immunology and mathematics: crossing the divide. Immunology 115, 2133.
Carpenter, S. R., Cottingham, K. L. and Stow, C. A. (1994). Fitting predator-prey models to time series with observation errors. Ecology 75, 12541264.
Christensen, N. O., Nansen, P., Fagbemi, B. O. and Monrad, J. (1987). Heterologous antagonistic and synergistic interactions between helminths and between helminths and protozoans in concurrent experimental infection of mammalian hosts. Parasitology Research 73, 387410.
Cox, F. E. G. (2001). Concomitant infections, parasites and immune responses. Parasitology 122, S23S38.
Ebert, D. (1994). Virulence and local adaptation of a horizontally transmitted parasite. Science 265, 10841086.
Fenton, A. (2008). Worms and germs: the population dynamic consequences of microparasite-macroparasite co-infection. Parasitology 135, 15451560.
Fenton, A., Lamb, T. and Graham, A. L. (2008). Optimality analysis of Th1/Th2 immune responses during microparasite-macroparasite co-infection, with epidemiological feedbacks. Parasitology 135, 841853.
Fenton, A., Lello, J. and Bonsall, M. B. (2006). Pathogen responses to host immunity: the impact of time delays and memory on the evolution of virulence. Proceedings of the Royal Society of London B 273, 20832090.
Ferguson, N. M., Galvani, A. P. and Bush, R. M. (2003). Ecological and immunological determinants of influenza evolution. Nature, London 422, 428433.
Gause, G. F. (1934). The Struggle for Existence. Williams and Wilkins, Baltimore, MD, USA.
Gause, G. F. (1935). Experimental demonstration of Volterra's periodic oscillations in the numbers of animals. Journal of Experimental Biology 12, 4448.
Gause, G. F. (1936). Further studies of interaction between predators and prey. The Journal of Animal Ecology 5, 118.
Gog, J. R. and Grenfell, B. T. (2002). Dynamics and selection of many-strain pathogens. Proceedings of the National Academy of Sciences, USA 99, 1720917214.
Graham, A. L. (2008). Ecological rules governing helminth-microparasite coinfection. Proceedings of the National Academy of Sciences, USA 105, 566570.
Gupta, S., Swinton, J. and Anderson, R. M. (1994). Theoretical studies of the effects of heterogeneity in the parasite population on the transmission dynamics of malaria. Proceedings of the Royal Society of London, B 256, 231238.
Harrison, G. W. (1995). Comparing predator-prey models to Luckinbill's experiment with Didinium and Paramecium. Ecology 76, 357374.
Holmes, J. C. (1961). Effects of concurrent infections on Hymenolepis diminuta (Cestoda) and Moniliformis dubius (Acanthocephala). 1. General effects and comparison with crowding. Journal of Parasitology 47, 209216.
Holmes, J. C. (1962). Effects of concurrent infections on Hymenolepis diminuta (Cestoda) and Moniliformis dubius (Acanthocephala). Effects on growth. Journal of Parasitology 48, 8796.
Holt, R. D. (1977). Predation, apparent competition, and structure of prey communities. Theoretical Population Biology 12, 197229.
Holt, R. D. (1983). Optimal foraging and the form of the predator isocline. American Naturalist 122, 521541.
Holt, R. D. and Dobson, A. P. (2006). Extending the principles of community ecology to address the epidemiology of host-pathogen systems. In Disease Ecology: Community Structure and Pathogen Dynamics (ed. Collinge, S. K. and Ray, C.), pp. 6–27. Oxford University Press, Oxford, UK.
Holt, R. D. and Lawton, J. H. (1994). The ecological consequences of shared natural enemies. Annual Review of Ecology and Systematics 25, 495520.
Jost, C. and Arditi, R. (2001). From pattern to process: identifying predator-prey models from time-series data. Population Ecology 43, 229243.
Keymer, A. (1982). Density-dependent mechanisms in the regulation of intestinal helminth populations. Parasitology 84, 573587.
Koelle, K., Rodo, X., Pascual, M., Yunus, M. and Mostafa, G. (2005). Refractory periods and climate forcing in cholera dynamics. Nature, London 436, 696700.
Lamb, T. J., Graham, A. L., Le Goff, L. and Allen, J. E. (2005). Co-infected C57BL/6 mice mount appropriately polarized and compartmentalized cytokine responses to Litomosoides sigmodontis and Leishmania major but disease progression is altered. Parasite Immunology 27, 317324.
Lello, J., Boag, B., Fenton, A., Stevenson, I. R. and Hudson, P. J. (2004). Competition and mutualism among the gut helminths of a mammalian host. Nature, London 428, 840844.
Liesenfeld, O., Dunay, I. R. and Erb, K. J. (2004). Infection with Toxoplasma gondii reduces established and developing Th2 responses induced by Nippostrongylus brasiliensis infection. Infection and Immunity 72, 38123822.
Marshall, B. G., Mitchell, D. M., Shaw, R. J., Marais, F., Watkins, R. M. and Coker, R. J. (1999). HIV and tuberculosis co-infection in an inner London hospital – a prospective anonymized seroprevalence study. Journal of Infection 38, 162166.
May, R. M. (1974). Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton, NJ, USA.
Murdoch, W. W., Briggs, C. J. and Nisbet, R. M. (2003). Consumer-Resource Dynamics. Princeton University Press, Princeton, NJ, USA.
Nowak, M. A. and May, R. M. (2000). Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford University Press, Oxford, UK.
Otterstatter, M. C. and Thomson, J. D. (2006). Within-host dynamics of an intestinal pathogen of bumble bees. Parasitology 133, 749761.
Pedersen, A. B. and Fenton, A. (2007). Emphasising the ecology in parasite community ecology. Trends in Ecology & Evolution 22, 133139.
Perelson, A. S. (2002). Modelling viral and immune system dynamics. Nature Reviews Immunology 2, 2836.
Pilyugin, S. S. and Antia, R. (2000). Modeling immune responses with handling time. Bulletin of Mathematical Biology 62, 869890.
Read, A. F., Graham, A. L. and Raberg, L. (2008). Animal defenses against infectious agents: is damage control more important than pathogen control? PLoS Biology 6, 26382641.
Riley, S., Donnelly, C. A. and Ferguson, N. M. (2003). Robust parameter estimation techniques for stochastic within-host macroparasite models. Journal of Theoretical Biology 225, 419430.
Rohani, P., Green, C. J., Mantilla-Beniers, N. B. and Grenfell, B. T. (2003). Ecological interference between fatal diseases. Nature, London 422, 885888.
Shen, Z., Ning, F., Zhou, W. G., He, X., Lin, C. Y., Chin, D. P., Zhu, Z. H. and Schuchat, A. (2004). Superspreading SARS events, Beijing, 2003. Emerging Infectious Diseases 10, 256260.
Sole, R. V. and Montoya, J. M. (2001). Complexity and fragility in ecological networks. Proceedings of the Royal Society of London, B 268, 20392045.
Tompkins, D. M. and Hudson, P. J. (1999). Regulation of nematode fecundity in the ring-necked pheasant (Phasianus colchicus): not just density dependence. Parasitology 118, 417423.
Volterra, V. (1926). Fluctuations in the abundance of a species considered mathematically. Nature, London 118, 558560.
Wodarz, D. (2006). Ecological and evolutionary principles in immunology. Ecology Letters 9, 694705.
Zinkernagel, R. M. (1996). Immunology taught by viruses. Science 271, 173178.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Fenton supplementary material

 Word (256 KB)
256 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed