Skip to main content Accessibility help
×
×
Home

Cerebral malaria: why experimental murine models are required to understand the pathogenesis of disease

  • J. BRIAN de SOUZA (a1) (a2), JULIUS C. R. HAFALLA (a1), ELEANOR M. RILEY (a1) and KEVIN N. COUPER (a1)

Summary

Cerebral malaria is a life-threatening complication of malaria infection. The pathogenesis of cerebral malaria is poorly defined and progress in understanding the condition is severely hampered by the inability to study in detail, ante-mortem, the parasitological and immunological events within the brain that lead to the onset of clinical symptoms. Experimental murine models have been used to investigate the sequence of events that lead to cerebral malaria, but there is significant debate on the merits of these models and whether their study is relevant to human disease. Here we review the current understanding of the parasitological and immunological events leading to human and experimental cerebral malaria, and explain why we believe that studies with experimental models of CM are crucial to define the pathogenesis of the condition.

Copyright

Corresponding author

*Corresponding author: Immunology Unit, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK. Tel: +44 207 927 2690. Fax: +44 207 927 2807. E-mail: kevin.couper@lshtm.ac.uk

References

Hide All
Adams, S., Turner, G. D., Nash, G. B., Micklem, K., Newbold, C. I. and Craig, A. G. (2000). Differential binding of clonal variants of Plasmodium falciparum to allelic forms of intracellular adhesion molecule 1 determined by flow adhesion assay. Infection and Immunity 68, 264269.
Aikawa, M., Brown, A., Smith, C. D., Tegoshi, T., Howard, R. J., Hasler, T. H., Ito, Y., Perry, G., Collins, W. E. and Webster, K. (1992). A primate model for human cerebral malaria: Plasmodium coatneyi-infected rhesus monkeys. American Journal of Tropical Medicine and Hygiene 46, 391397.
Amani, V., Vigario, A. M., Belnoue, E., Marussig, M., Fonseca, L., Mazier, D. and Renia, L. (2000). Involvement of IFN-gamma receptor-medicated signaling in pathology and anti-malarial immunity induced by Plasmodium berghei infection. European Journal of Immunology 30, 16461655.
Amante, F. H., Stanley, A. C., Randall, L. M., Zhou, Y., Haque, A., Mcsweeney, K., Waters, A. P., Janse, C. J., Good, M. F., Hill, G. R. and Engwerda, C. R. (2007). A role for natural regulatory T cells in the pathogenesis of experimental cerebral malaria. American Journal of Pathology 171, 548559.
Artavanis-Tsakonas, K., Tongren, J. E. and Riley, E. M. (2003). The war between the malaria parasite and the immune system: immunity, immunoregulation and immunopathology. Clinical and Experimental Immunology 133, 145152.
Bagot, S., Campino, S., Penha-Goncalves, C., Pied, S., Cazenave, P. A. and Holmberg, D. (2002). Identification of two cerebral malaria resistance loci using an inbred wild-derived mouse strain. Proceedings of the National Academy of Sciences, USA 99, 99199923.
Baruch, D. I., Ma, X. C., Singh, H. B., Bi, X., Pasloske, B. L. and Howard, R. J. (1997). Identification of a region of PfEMP1 that mediates adherence of Plasmodium falciparum infected erythrocytes to CD36: conserved function with variant sequence. Blood 90, 37663775.
Baruch, D. I., Pasloske, B. L., Singh, H. B., Bi, X., Ma, X. C., Feldman, M., Taraschi, T. F. and Howard, R. J. (1995). Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82, 7787.
Bate, C. A. and Kwiatkowski, D. P. (1994). Stimulators of tumour necrosis factor production released by damaged erythrocytes. Immunology 83, 256261.
Beare, N. A., Taylor, T. E., Harding, S. P., Lewallen, S. and Molyneux, M. E. (2006). Malarial retinopathy: a newly established diagnostic sign in severe malaria. American Journal of Tropical Medicine and Hygiene 75, 790797.
Beeson, J. G., Reeder, J. C., Rogerson, S. J. and Brown, G. V. (2001). Parasite adhesion and immune evasion in placental malaria. Trends in Parasitology 17, 331337.
Beghdadi, W., Porcherie, A., Schneider, B. S., Dubayle, D., Peronet, R., Huerre, M., Watanabe, T., Ohtsu, H., Louis, J. and Mecheri, S. (2008). Inhibition of histamine-mediated signaling confers significant protection against severe malaria in mouse models of disease. Journal of Experimental Medicine 205, 395408.
Bellamy, R., Kwiatkowski, D. and Hill, A. V. (1998). Absence of an association between intercellular adhesion molecule 1, complement receptor 1 and interleukin 1 receptor antagonist gene polymorphisms and severe malaria in a West African population. Transactions of the Royal Society of Tropical Medicine and Hygiene 92, 312316.
Belnoue, E., Kayibanda, M., Vigario, A. M., Deschemin, J. C., Van Rooijen, N., Viguier, M., Snounou, G. and Renia, L. (2002). On the pathogenic role of brain-sequestered alphabeta CD8+ T cells in experimental cerebral malaria. Journal of Immunology 169, 63696375.
Belnoue, E., Potter, S. M., Rosa, D. S., Mauduit, M., Gruner, A. C., Kayibanda, M., Mitchell, A. J., Hunt, N. H. and Renia, L. (2008). Control of pathogenic CD8+ T cell migration to the brain by IFN-gamma during experimental cerebral malaria. Parasite Immunology 30, 544553.
Berendt, A. R., Tumer, G. D. and Newbold, C. I. (1994). Cerebral malaria: the sequestration hypothesis. Parasitology Today 10, 412414.
Boivin, M. J., Bangirana, P., Byarugaba, J., Opoka, R. O., Idro, R., Jurek, A. M. and John, C. C. (2007). Cognitive impairment after cerebral malaria in children: a prospective study. Pediatrics 119, e360366.
Buffet, P. A., Gamain, B., Scheidig, C., Baruch, D., Smith, J. D., Hernandez-Rivas, R., Pouvelle, B., Oishi, S., Fujii, N., Fusai, T., Parzy, D., Miller, L. H., Gysin, J. and Scherf, A. (1999). Plasmodium falciparum domain mediating adhesion to chondroitin sulfate A: a receptor for human placental infection. Proceedings of the National Academy of Sciences, USA 96, 1274312748.
Cabantous, S., Doumbo, O., Ranque, S., Poudiougou, B., Traore, A., Hou, X., Keita, M. M., Cisse, M. B., Dessein, A. J. and Marquet, S. (2006). Alleles 308A and 238A in the tumor necrosis factor alpha gene promoter do not increase the risk of severe malaria in children with Plasmodium falciparum infection in Mali. Infection and Immunity 74, 70407042.
Campanella, G. S., Tager, A. M., El Khoury, J. K., Thomas, S. Y., Abrazinski, T. A., Manice, L. A., Colvin, R. A. and Luster, A. D. (2008). Chemokine receptor CXCR3 and its ligands CXCL9 and CXCL10 are required for the development of murine cerebral malaria. Proceedings of the National Academy of Sciences, USA 105, 48144819.
Campino, S., Bagot, S., Bergman, M. L., Almeida, P., Sepulveda, N., Pied, S., Penha-Goncalves, C., Holmberg, D. and Cazenave, P. A. (2005). Genetic control of parasite clearance leads to resistance to Plasmodium berghei ANKA infection and confers immunity. Genes & Immunity 6, 416421.
Carlton, J. M., Angiuoli, S. V., Suh, B. B., Kooij, T. W., Pertea, M., Silva, J. C., Ermolaeva, M. D., Allen, J. E., Selengut, J. D., Koo, H. L., Peterson, J. D., Pop, M., Kosack, D. S., Shumway, M. F., Bidwell, S. L., Shallom, S. J., Van Aken, S. E., Riedmuller, S. B., Feldblyum, T. V., Cho, J. K., Quackenbush, J., Sedegah, M., Shoaibi, A., Cummings, L. M., Florens, L., Yates, J. R., Raine, J. D., Sinden, R. E., Harris, M. A., Cunningham, D. A., Preiser, P. R., Bergman, L. W., Vaidya, A. B., Van Lin, L. H., Janse, C. J., Waters, A. P., Smith, H. O., White, O. R., Salzberg, S. L., Venter, J. C., Fraser, C. M., Hoffman, S. L., Gardner, M. J. and Carucci, D. J. (2002). Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature, London 419, 512519.
Carter, J. A., Mung'ala-Odera, V., Neville, B. G., Murira, G., Mturi, N., Musumba, C. and Newton, C. R. (2005 a). Persistent neurocognitive impairments associated with severe falciparum malaria in Kenyan children. Journal of Neurology, Neurosurgery & Psychiatry 76, 476481.
Carter, J. A., Ross, A. J., Neville, B. G., Obiero, E., Katana, K., Mung'ala-Odera, V., Lees, J. A. and Newton, C. R. (2005 b). Developmental impairments following severe falciparum malaria in children. Tropical Medicine & International Health 10, 310.
Casals-Pascual, C., Idro, R., Gicheru, N., Gwer, S., Kitsao, B., Gitau, E., Mwakesi, R., Roberts, D. J. and Newton, C. R. (2008). High levels of erythropoietin are associated with protection against neurological sequelae in African children with cerebral malaria. Proceedings of the National Academy of Sciences, USA 105, 26342639.
Casals-Pascual, C., Idro, R., Picot, S., Roberts, D. J. and Newton, C. R. (2009). Can erythropoietin be used to prevent brain damage in cerebral malaria? Trends in Parasitology 25, 3036.
Chakravorty, S. J. and Craig, A. (2005). The role of ICAM-1 in Plasmodium falciparum cytoadherence. European Journal of Cell Biology 84, 1527.
Chakravorty, S. J., Hughes, K. R. and Craig, A. G. (2008). Host response to cytoadherence in Plasmodium falciparum. Biochemical Society Transactions 36, 221228.
Chang-Ling, T., Neill, A. L. and Hunt, N. H. (1992). Early microvascular changes in murine cerebral malaria detected in retinal wholemounts. American Journal of Pathology 140, 11211130.
Chen, Q., Barragan, A., Fernandez, V., Sundstrom, A., Schlichtherle, M., Sahlen, A., Carlson, J., Datta, S. and Wahlgren, M. (1998). Identification of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) as the rosetting ligand of the malaria parasite P. falciparum. Journal of Experimental Medicine 187, 1523.
Clark, C. J., Phillips, R. S., McMillan, R. B., Montgomery, I. O. and Stone, T. W. (2005). Differences in the neurochemical characteristics of the cortex and striatum of mice with cerebral malaria. Parasitology 130, 2329.
Clark, I. A., Awburn, M. M., Whitten, R. O., Harper, C. G., Liomba, N. G., Molyneux, M. E. and Taylor, T. E. (2003). Tissue distribution of migration inhibitory factor and inducible nitric oxide synthase in falciparum malaria and sepsis in African children. Malaria Journal 2, 6.
Clark, I. A., Budd, A. C., Alleva, L. M. and Cowden, W. B. (2006). Human malarial disease: a consequence of inflammatory cytokine release. Malaria Journal 5, 85.
Clark, T. G., Diakite, M., Auburn, S., Campino, S., Fry, A. E., Green, A., Richardson, A., Small, K., Teo, Y. Y., Wilson, J., Jallow, M., Sisay-Joof, F., Pinder, M., Griffiths, M. J., Peshu, N., Williams, T. N., Marsh, K., Molyneux, M. E., Taylor, T. E., Rockett, K. A. and Kwiatkowski, D. P. (2009). Tumor necrosis factor and lymphotoxin-alpha polymorphisms and severe malaria in African populations. Journal of Infectious Diseases 199, 569575.
Coltel, N., Combes, V., Wassmer, S. C., Chimini, G. and Grau, G. E. (2006). Cell vesiculation and immunopathology: implications in cerebral malaria. Microbes and Infection 8, 23052316.
Combes, V., Rosenkranz, A. R., Redard, M., Pizzolato, G., Lepidi, H., Vestweber, D., Mayadas, T. N. and Grau, G. E. (2004). Pathogenic role of P-selectin in experimental cerebral malaria: importance of the endothelial compartment. American Journal of Pathology 164, 781786.
Couper, K. N., Blount, D. G., Hafalla, J. C., Van Rooijen, N., De Souza, J. B. and Riley, E. M. (2007). Macrophage-mediated but gamma interferon-independent innate immune responses control the primary wave of Plasmodium yoelii parasitemia. Infection and Immunity 75, 58065818.
Couper, K. N., Blount, D. G., Wilson, M. S., Hafalla, J. C., Belkaid, Y., Kamanaka, M., Flavell, R. A., De Souza, J. B. and Riley, E. M. (2008). IL-10 from CD4CD25Foxp3CD127 adaptive regulatory T cells modulates parasite clearance and pathology during malaria infection. PLoS Pathogens 4, e1000004.
Crawley, J., Smith, S., Kirkham, F., Muthinji, P., Waruiru, C. and Marsh, K. (1996). Seizures and status epilepticus in childhood cerebral malaria. Quarterly Journal of Medicine 89, 591597.
Cunningham, D. A., Jarra, W., Koernig, S., Fonager, J., Fernandez-Reyes, D., Blythe, J. E., Waller, C., Preiser, P. R. and Langhorne, J. (2005). Host immunity modulates transcriptional changes in a multigene family (yir) of rodent malaria. Molecular Microbiology 58, 636647.
Curfs, J. H., Hermsen, C. C., Kremsner, P., Neifer, S., Meuwissen, J. H., Van Rooyen, N. and Eling, W. M. (1993 b). Tumour necrosis factor-alpha and macrophages in Plasmodium berghei-induced cerebral malaria. Parasitology 107, 125134.
Curfs, J. H., Van Der Meide, P. H., Billiau, A., Meuwissen, J. H. and Eling, W. M. (1993 a). Plasmodium berghei: recombinant interferon-gamma and the development of parasitemia and cerebral lesions in malaria-infected mice. Experimental Parasitology 77, 212223.
De Souza, J. B. and Riley, E. M. (2002). Cerebral malaria: the contribution of studies in animal models to our understanding of immunopathogenesis. Microbes and Infection 4, 291300.
Del Portillo, H. A., Fernandez-Becerra, C., Bowman, S., Oliver, K., Preuss, M., Sanchez, C. P., Schneider, N. K., Villalobos, J. M., Rajandream, M. A., Harris, D., Pereira Da Silva, L. H., Barrell, B. and Lanzer, M. (2001). A superfamily of variant genes encoded in the subtelomeric region of Plasmodium vivax. Nature, London 410, 839842.
Delahaye, N. F., Coltel, N., Puthier, D., Barbier, M., Benech, P., Joly, F., Iraqi, F. A., Grau, G. E., Nguyen, C. and Rihet, P. (2007). Gene expression analysis reveals early changes in several molecular pathways in cerebral malaria-susceptible mice versus cerebral malaria-resistant mice. BMC Genomics, 8, 452467.
Desruisseaux, M. S., Gulinello, M., Smith, D. N., Lee, S. C., Tsuji, M., Weiss, L. M., Spray, D. C. and Tanowitz, H. B. (2008). Cognitive dysfunction in mice infected with Plasmodium berghei strain ANKA. Journal of Infectious Diseases 197, 16211627.
Dewalick, S., Amante, F. H., Mcsweeney, K. A., Randall, L. M., Stanley, A. C., Haque, A., Kuns, R. D., Macdonald, K. P., Hill, G. R. and Engwerda, C. R. (2007). Cutting edge: conventional dendritic cells are the critical APC required for the induction of experimental cerebral malaria. Journal of Immunology 178, 60336037.
Dondorp, A., Nosten, F., Stepniewska, K., Day, N. and White, N. (2005 a). Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet 366, 717725.
Dondorp, A. M., Desakorn, V., Pongtavornpinyo, W., Sahassananda, D., Silamut, K., Chotivanich, K., Newton, P. N., Pitisuttithum, P., Smithyman, A. M., White, N. J. and Day, N. P. (2005 b). Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoS Medicine 2, e204.
Elhassan, I. M., Hviid, L., Satti, G., Akerstrom, B., Jakobsen, P. H., Jensen, J. B. and Theander, T. G. (1994). Evidence of endothelial inflammation, T cell activation, and T cell reallocation in uncomplicated Plasmodium falciparum malaria. American Journal of Tropical Medicine and Hygiene 51, 372379.
Engwerda, C. R., Beattie, L. and Amante, F. H. (2005). The importance of the spleen in malaria. Trends in Parasitology 21, 7580.
Engwerda, C. R., Mynott, T. L., Sawhney, S., De Souza, J. B., Bickle, Q. D. and Kaye, P. M. (2002). Locally up-regulated lymphotoxin alpha, not systemic tumor necrosis factor alpha, is the principle mediator of murine cerebral malaria. Journal of Experimental Medicine 195, 13711377.
Esslinger, C. W., Picot, S. and Ambroise-Thomas, P. (1994). Intra-erythrocytic Plasmodium falciparum induces up-regulation of inter-cellular adhesion molecule-1 on human endothelial cells in vitro. Scandinavian Journal of Immunology 39, 229232.
Faille, D., Combes, V., Mitchell, A. J., Fontaine, A., Juhan-Vague, I., Alessi, M. C., Chimini, G., Fusai, T. and Grau, G. E. (2009). Platelet microparticles: a new player in malaria parasite cytoadherence to human brain endothelium. FASEB Journal 23, 34493458.
Favre, N., Da Laperousaz, C., Ryffel, B., Weiss, N. A., Imhof, B. A., Rudin, W., Lucas, R. and Piguet, P. F. (1999). Role of ICAM-1 (CD54) in the development of murine cerebral malaria. Microbes and Infection 1, 961968.
Fernandez-Reyes, D., Craig, A. G., Kyes, S. A., Peshu, N., Snow, R. W., Berendt, A. R., Marsh, K. and Newbold, C. I. (1997). A high frequency African coding polymorphism in the N-terminal domain of ICAM-1 predisposing to cerebral malaria in Kenya. Human Molecular Genetics 6, 13571360.
Finley, R., Weintraub, J., Louis, J. A., Engers, H. D., Zubler, R. and Lambert, P. H. (1983). Prevention of cerebral malaria by adoptive transfer of malaria-specific cultured T cells into mice infected with Plasmodium berghei. Journal of Immunology 131, 15221526.
Franke-Fayard, B., Janse, C. J., Cunha-Rodrigues, M., Ramesar, J., Buscher, P., Que, I., Lowik, C., Voshol, P. J., Den Boer, M. A., Van Duinen, S. G., Febbraio, M., Mota, M. M. and Waters, A. P. (2005). Murine malaria parasite sequestration: CD36 is the major receptor, but cerebral pathology is unlinked to sequestration. Proceedings of the National Academy of Sciences, USA 102, 1146811473.
Fried, M. and Duffy, P. E. (2002). Two DBLgamma subtypes are commonly expressed by placental isolates of Plasmodium falciparum. Molecular and Biochemical Parasitology 122, 201210.
Fry, A. E., Auburn, S., Diakite, M., Green, A., Richardson, A., Wilson, J., Jallow, M., Sisay-Joof, F., Pinder, M., Griffiths, M. J., Peshu, N., Williams, T. N., Marsh, K., Molyneux, M. E., Taylor, T. E., Rockett, K. A. and Kwiatkowski, D. P. (2008). Variation in the ICAM1 gene is not associated with severe malaria phenotypes. Genes & Immunity 9, 462469.
Gamain, B., Smith, J. D., Avril, M., Baruch, D. I., Scherf, A., Gysin, J. and Miller, L. H. (2004). Identification of a 67-amino-acid region of the Plasmodium falciparum variant surface antigen that binds chondroitin sulphate A and elicits antibodies reactive with the surface of placental isolates. Molecular Microbiology 53, 445455.
Gardner, J. P., Pinches, R. A., Roberts, D. J. and Newbold, C. I. (1996). Variant antigens and endothelial receptor adhesion in Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 93, 35033508.
Good, M. F., Xu, H., Wykes, M. and Engwerda, C. R. (2005). Development and regulation of cell-mediated immune responses to the blood stages of malaria: implications for vaccine research. Annual Review of Immunology 23, 6999.
Gramaglia, I., Sobolewski, P., Meays, D., Contreras, R., Nolan, J. P., Frangos, J. A., Intaglietta, M. and Van Der Heyde, H. C. (2006). Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria. Nature Medicine 12, 14171422.
Grau, G. E., Fajardo, L. F., Piguet, P. F., Allet, B., Lambert, P. H. and Vassalli, P. (1987). Tumor necrosis factor (cachectin) as an essential mediator in murine cerebral malaria. Science 237, 12101212.
Grau, G. E., Heremans, H., Piguet, P. F., Pointaire, P., Lambert, P. H., Billiau, A. and Vassalli, P. (1989). Monoclonal antibody against interferon gamma can prevent experimental cerebral malaria and its associated overproduction of tumor necrosis factor. Proceedings of the National Academy of Sciences, USA 86, 55725574.
Gray, C., McCormick, C., Turner, G. and Craig, A. (2003). ICAM-1 can play a major role in mediating P. falciparum adhesion to endothelium under flow. Molecular and Biochemical Parasitology 128, 187193.
Gysin, J., Aikawa, M., Tourneur, N. and Tegoshi, T. (1992). Experimental Plasmodium falciparum cerebral malaria in the squirrel monkey Saimiri sciureus. Experimental Parasitology 75, 390398.
Haldar, K., Murphy, S. C., Milner, D. A. and Taylor, T. E. (2007). Malaria: mechanisms of erythrocytic infection and pathological correlates of severe disease. Annual Review of Pathology 2, 217249.
Hansen, D. S., Bernard, N. J., Nie, C. Q. and Schofield, L. (2007). NK cells stimulate recruitment of CXCR3+ T cells to the brain during Plasmodium berghei-mediated cerebral malaria. Journal of Immunology 178, 57795788.
Hau, J. and Van Hoosier, G. L. Jr. (2005). Handbook of Laboratory Animal Science. 2nd Edn. CRC Press, Boca Raton, FL, USA.
Hearn, J., Rayment, N., Landon, D. N., Katz, D. R. and De Souza, J. B. (2000). Immunopathology of cerebral malaria: morphological evidence of parasite sequestration in murine brain microvasculature. Infection and Immunity 68, 53645376.
Heddini, A., Pettersson, F., Kai, O., Shafi, J., Obiero, J., Chen, Q., Barragan, A., Wahlgren, M. and Marsh, K. (2001). Fresh isolates from children with severe Plasmodium falciparum malaria bind to multiple receptors. Infection and Immunity 69, 58495856.
Hermsen, C., Van De Wiel, T., Mommers, E., Sauerwein, R. and Eling, W. (1997). Depletion of CD4+ or CD8+ T-cells prevents Plasmodium berghei induced cerebral malaria in end-stage disease. Parasitology 114, 712.
Ho, M., Schollaardt, T., Niu, X., Looareesuwan, S., Patel, K. D. and Kubes, P. (1998). Characterization of Plasmodium falciparum-infected erythrocyte and P-selectin interaction under flow conditions. Blood 91, 48034809.
Hoffman, S. L., Rustama, D., Punjabi, N. H., Surampaet, B., Sanjaya, B., Dimpudus, A. J., Mckee, K. T. Jr., Paleologo, F. P., Campbell, J. R., Marwoto, H. and Laughlin, L. (1988). High-dose dexamethasone in quinine-treated patients with cerebral malaria: a double-blind, placebo-controlled trial. Journal of Infectious Diseases 158, 325331.
Hunt, N. H., Golenser, J., Chan-Ling, T., Parekh, S., Rae, C., Potter, S., Medana, I. M., Miu, J. and Ball, H. J. (2006). Immunopathogenesis of cerebral malaria. International Journal for Parasitology 36, 569582.
Hviid, L., Kurtzhals, J. A., Goka, B. Q., Oliver-Commey, J. O., Nkrumah, F. K. and Theander, T. G. (1997). Rapid reemergence of T cells into peripheral circulation following treatment of severe and uncomplicated Plasmodium falciparum malaria. Infection and Immunity 65, 40904093.
Ibiwoye, M. O., Howard, C. V., Sibbons, P., Hasan, M. and Van Velzen, D. (1993). Cerebral malaria in the rhesus monkey (Macaca mulatta): observations on host pathology. Journal of Comparative Pathology 108, 303310.
Idro, R., Jenkins, N. E. and Newton, C. R. (2005). Pathogenesis, clinical features, and neurological outcome of cerebral malaria. Lancet Neurology 4, 827840.
Janssen, C. S., Barrett, M. P., Turner, C. M. and Phillips, R. S. (2002). A large gene family for putative variant antigens shared by human and rodent malaria parasites. Proceedings of the Royal Society of London, B 269, 431436.
Jennings, V. M., Lal, A. A. and Hunter, R. L. (1998). Evidence for multiple pathologic and protective mechanisms of murine cerebral malaria. Infection and Immunity 66, 59725979.
Jensen, A. T., Magistrado, P., Sharp, S., Joergensen, L., Lavstsen, T., Chiucchiuini, A., Salanti, A., Vestergaard, L. S., Lusingu, J. P., Hermsen, R., Sauerwein, R., Christensen, J., Nielsen, M. A., Hviid, L., Sutherland, C., Staalsoe, T. and Theander, T. G. (2004). Plasmodium falciparum associated with severe childhood malaria preferentially expresses PfEMP1 encoded by group A var genes. Journal of Experimental Medicine 199, 11791190.
John, C. C., Panoskaltsis-Mortari, A., Opoka, R. O., Park, G. S., Orchard, P. J., Jurek, A. M., Idro, R., Byarugaba, J. and Boivin, M. J. (2008). Cerebrospinal fluid cytokine levels and cognitive impairment in cerebral malaria. American Journal of Tropical Medicine and Hygiene 78, 198205.
Johnson, J. K., Swerlick, R. A., Grady, K. K., Millet, P. and Wick, T. M. (1993). Cytoadherence of Plasmodium falciparum-infected erythrocytes to microvascular endothelium is regulatable by cytokines and phorbol ester. Journal of Infectious Diseases 167, 698703.
Kaiser, K., Texier, A., Ferrandiz, J., Buguet, A., Meiller, A., Latour, C., Peyron, F., Cespuglio, R. and Picot, S. (2006). Recombinant human erythropoietin prevents the death of mice during cerebral malaria. Journal of Infectious Diseases 193, 987995.
Kampfl, A. W., Birbamer, G. G., Pfausler, B. E., Haring, H. P. and Schmutzhard, E. (1993). Isolated pontine lesion in algid cerebral malaria: clinical features, management, and magnetic resonance imaging findings. American Journal of Tropical Medicine and Hygiene 48, 818822.
Kaul, D. K., Nagel, R. L., Llena, J. F. and Shear, H. L. (1994). Cerebral malaria in mice: demonstration of cytoadherence of infected red blood cells and microrheologic correlates. American Journal of Tropical Medicine and Hygiene 50, 512521.
Knight, J. C., Udalova, I., Hill, A. V., Greenwood, B. M., Peshu, N., Marsh, K. and Kwiatkowski, D. (1999). A polymorphism that affects OCT-1 binding to the TNF promoter region is associated with severe malaria. Nature Genetics 22, 145150.
Koch, O., Awomoyi, A., Usen, S., Jallow, M., Richardson, A., Hull, J., Pinder, M., Newport, M. and Kwiatkowski, D. (2002). IFNGR1 gene promoter polymorphisms and susceptibility to cerebral malaria. Journal of Infectious Diseases 185, 16841687.
Kossodo, S., Monso, C., Juillard, P., Velu, T., Goldman, M. and Grau, G. E. (1997). Interleukin-10 modulates susceptibility in experimental cerebral malaria. Immunology 91, 536540.
Kremsner, P. G., Grundmann, H., Neifer, S., Sliwa, K., Sahlmuller, G., Hegenscheid, B. and Bienzle, U. (1991). Pentoxifylline prevents murine cerebral malaria. Journal of Infectious Diseases 164, 605608.
Lackner, P., Beer, R., Helbok, R., Broessner, G., Engelhardt, K., Brenneis, C., Schmutzhard, E. and Pfaller, K. (2006). Scanning electron microscopy of the neuropathology of murine cerebral malaria. Malaria Journal 5, 116.
Li, J., Chang, W. L., Sun, G., Chen, H. L., Specian, R. D., Berney, S. M., Kimpel, D., Granger, D. N. and Van Der Heyde, H. C. (2003). Intercellular adhesion molecule 1 is important for the development of severe experimental malaria but is not required for leukocyte adhesion in the brain. Journal of Investigative Medicine 51, 128140.
Loizon, S., Boeuf, P., Tetteh, J. K., Goka, B., Obeng-Adjei, G., Kurtzhals, J. A., Rogier, C., Akanmori, B. D., Mercereau-Puijalon, O., Hviid, L. and Behr, C. (2007). V beta profiles in African children with acute cerebral or uncomplicated malaria: very focused changes among a remarkable global stability. Microbes and Infection 9, 12521259.
Lou, J., Gasche, Y., Zheng, L., Critico, B., Monso-Hinard, C., Juillard, P., Morel, P., Buurman, W. A. and Grau, G. E. (1998). Differential reactivity of brain microvascular endothelial cells to TNF reflects the genetic susceptibility to cerebral malaria. European Journal of Immunology 28, 39894000.
Lou, J., Lucas, R. and Grau, G. E. (2001). Pathogenesis of cerebral malaria: recent experimental data and possible applications for humans. Clinical Microbiology Reviews 14, 810820.
Lovegrove, F. E., Gharib, S. A., Patel, S. N., Hawkes, C. A., Kain, K. C. and Liles, W. C. (2007). Expression microarray analysis implicates apoptosis and interferon-responsive mechanisms in susceptibility to experimental cerebral malaria. American Journal of Pathology 171, 18941903.
Lovegrove, F. E., Gharib, S. A., Pena-Castillo, L., Patel, S. N., Ruzinski, J. T., Hughes, T. R., Liles, W. C. and Kain, K. C. (2008). Parasite burden and CD36-mediated sequestration are determinants of acute lung injury in an experimental malaria model. PLoS Pathogens 4, e1000068.
Lundie, R. J., De Koning-Ward, T. F., Davey, G. M., Nie, C. Q., Hansen, D. S., Lau, L. S., Mintern, J. D., Belz, G. T., Schofield, L., Carbone, F. R., Villadangos, J. A., Crabb, B. S. and Heath, W. R. (2008). Blood-stage Plasmodium infection induces CD8+ T lymphocytes to parasite-expressed antigens, largely regulated by CD8alpha+ dendritic cells. Proceedings of the National Academy of Sciences, USA 105, 1450914514.
Mangano, V. D., Clark, T. G., Auburn, S., Campino, S., Diakite, M., Fry, A. E., Green, A., Richardson, A., Jallow, M., Sisay-Joof, F., Pinder, M., Griffiths, M. J., Newton, C., Peshu, N., Williams, T. N., Marsh, K., Molyneux, M. E., Taylor, T. E., Modiano, D., Kwiatkowski, D. P. and Rockett, K. A. (2009). Lack of association of interferon regulatory factor 1 with severe malaria in affected child-parental trio studies across three African populations. PLoS One 4, e4206.
Mangano, V. D., Luoni, G., Rockett, K. A., Sirima, B. S., Konate, A., Forton, J., Clark, T. G., Bancone, G., Sadighi Akha, E., Kwiatkowski, D. P. and Modiano, D. (2008). Interferon regulatory factor-1 polymorphisms are associated with the control of Plasmodium falciparum infection. Genes & Immunity 9, 122129.
Marsh, K. and Snow, R. W. (1999). Malaria transmission and morbidity. Parassitologia 41, 241246.
McCormick, C. J., Craig, A., Roberts, D., Newbold, C. I. and Berendt, A. R. (1997). Intercellular adhesion molecule-1 and CD36 synergize to mediate adherence of Plasmodium falciparum-infected erythrocytes to cultured human microvascular endothelial cells. The Journal of Clinical Investigation 100, 25212529.
McLean, S. A., Pearson, C. D. and Phillips, R. S. (1986). Antigenic variation in Plasmodium chabaudi: analysis of parent and variant populations by cloning. Parasite Immunology 8, 415424.
Medana, I. M., Hunt, N. H. and Chan-Ling, T. (1997 a). Early activation of microglia in the pathogenesis of fatal murine cerebral malaria. Glia 19, 91103.
Medana, I. M., Hunt, N. H. and Chaudhri, G. (1997 b). Tumor necrosis factor-alpha expression in the brain during fatal murine cerebral malaria: evidence for production by microglia and astrocytes. American Journal of Pathology 150, 14731486.
Mishra, S. K. and Wiese, L. (2009). Advances in the management of cerebral malaria in adults. Current Opinion in Neurology 22, 302307.
Mitchell, A. J., Hansen, A. M., Hee, L., Ball, H. J., Potter, S. M., Walker, J. C. and Hunt, N. H. (2005). Early cytokine production is associated with protection from murine cerebral malaria. Infection and Immunity 73, 56455653.
Miu, J., Mitchell, A. J., Muller, M., Carter, S. L., Manders, P. M., McQuillan, J. A., Saunders, B. M., Ball, H. J., Lu, B., Campbell, I. L. and Hunt, N. H. (2008). Chemokine gene expression during fatal murine cerebral malaria and protection due to CXCR3 deficiency. Journal of Immunology 180, 12171230.
Miyakoda, M., Kimura, D., Yuda, M., Chinzei, Y., Shibata, Y., Honma, K. and Yui, K. (2008). Malaria-specific and nonspecific activation of CD8+ T cells during blood stage of Plasmodium berghei infection. Journal of Immunology 181, 14201428.
Molyneux, M. E., Taylor, T. E., Wirima, J. J. and Borgstein, A. (1989). Clinical features and prognostic indicators in paediatric cerebral malaria: a study of 131 comatose Malawian children. Quarterly Journal of Medicine 71, 441459.
Monso-Hinard, C., Lou, J. N., Behr, C., Juillard, P. and Grau, G. E. (1997). Expression of major histocompatibility complex antigens on mouse brain microvascular endothelial cells in relation to susceptibility to cerebral malaria. Immunology 92, 5359.
Nagayasu, E., Nagakura, K., Akaki, M., Tamiya, G., Makino, S., Nakano, Y., Kimura, M. and Aikawa, M. (2002). Association of a determinant on mouse chromosome 18 with experimental severe Plasmodium berghei malaria. Infection and Immunity 70, 512516.
Neill, A. L. and Hunt, N. H. (1995). Effects of endotoxin and dexamethasone on cerebral malaria in mice. Parasitology 111, 443454.
Newbold, C., Craig, A., Kyes, S., Rowe, A., Fernandez-Reyes, D. and Fagan, T. (1999). Cytoadherence, pathogenesis and the infected red cell surface in Plasmodium falciparum. International Journal for Parasitology 29, 927937.
Nie, C. Q., Bernard, N. J., Norman, M. U., Amante, F. H., Lundie, R. J., Crabb, B. S., Heath, W. R., Engwerda, C. R., Hickey, M. J., Schofield, L. and Hansen, D. S. (2009). IP-10-mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection. PLoS Pathogens 5, e1000369.
Nie, C. Q., Bernard, N. J., Schofield, L. and Hansen, D. S. (2007). CD4+ CD25+ regulatory T cells suppress CD4+ T-cell function and inhibit the development of Plasmodium berghei-specific TH1 responses involved in cerebral malaria pathogenesis. Infection and Immunity 75, 22752282.
Nitcheu, J., Bonduelle, O., Combadiere, C., Tefit, M., Seilhean, D., Mazier, D. and Combadiere, B. (2003). Perforin-dependent brain-infiltrating cytotoxic CD8+ T lymphocytes mediate experimental cerebral malaria pathogenesis. Journal of Immunology 170, 22212228.
Normark, J., Nilsson, D., Ribacke, U., Winter, G., Moll, K., Wheelock, C. E., Bayarugaba, J., Kironde, F., Egwang, T. G., Chen, Q., Andersson, B. and Wahlgren, M. (2007). PfEMP1-DBL1alpha amino acid motifs in severe disease states of Plasmodium falciparum malaria. Proceedings of the National Academy of Sciences, USA 104, 1583515840.
Oakley, M. S., McCutchan, T. F., Anantharaman, V., Ward, J. M., Faucette, L., Erexson, C., Mahajan, B., Zheng, H., Majam, V., Aravind, L. and Kumar, S. (2008). Host biomarkers and biological pathways that are associated with the expression of experimental cerebral malaria in mice. Infection and Immunity 76, 45184529.
Ockenhouse, C. F., Ho, M., Tandon, N. N., Van Seventer, G. A., Shaw, S., White, N. J., Jamieson, G. A., Chulay, J. D. and Webster, H. K. (1991). Molecular basis of sequestration in severe and uncomplicated Plasmodium falciparum malaria: differential adhesion of infected erythrocytes to CD36 and ICAM-1. Journal of Infectious Diseases 164, 163169.
Ockenhouse, C. F., Tandon, N. N., Magowan, C., Jamieson, G. A. and Chulay, J. D. (1989). Identification of a platelet membrane glycoprotein as a falciparum malaria sequestration receptor. Science 243, 14691471.
Ockenhouse, C. F., Tegoshi, T., Maeno, Y., Benjamin, C., Ho, M., Kan, K. E., Thway, Y., Win, K., Aikawa, M. and Lobb, R. R. (1992). Human vascular endothelial cell adhesion receptors for Plasmodium falciparum-infected erythrocytes: roles for endothelial leukocyte adhesion molecule 1 and vascular cell adhesion molecule 1. Journal of Experimental Medicine 176, 11831189.
Ohno, T. and Nishimura, M. (2004). Detection of a new cerebral malaria susceptibility locus, using CBA mice. Immunogenetics 56, 675678.
Oleinikov, A. V., Amos, E., Frye, I. T., Rossnagle, E., Mutabingwa, T. K., Fried, M. and Duffy, P. E. (2009). High throughput functional assays of the variant antigen PfEMP1 reveal a single domain in the 3D7 Plasmodium falciparum genome that binds ICAM1 with high affinity and is targeted by naturally acquired neutralizing antibodies. PLoS Pathogens 5, e1000386.
Ortolano, F., Maffia, P., Dever, G., Hutchison, S., Benson, R., Millington, O. R., De Simoni, M. G., Bushell, T. J., Garside, P., Carswell, H. V. and Brewer, J. M. (2009). Imaging T-cell movement in the brain during experimental cerebral malaria. Parasite Immunology 31, 147150.
Pais, T. F. and Chatterjee, S. (2005). Brain macrophage activation in murine cerebral malaria precedes accumulation of leukocytes and CD8+ T cell proliferation. Journal of Neuroimmunology 163, 7383.
Pamplona, A., Ferreira, A., Balla, J., Jeney, V., Balla, G., Epiphanio, S., Chora, A., Rodrigues, C. D., Gregoire, I. P., Cunha-Rodrigues, M., Portugal, S., Soares, M. P. and Mota, M. M. (2007). Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria. Nature Medicine 13, 703710.
Patankar, T. F., Karnad, D. R., Shetty, P. G., Desai, A. P. and Prasad, S. R. (2002). Adult cerebral malaria: prognostic importance of imaging findings and correlation with postmortem findings. Radiology 224, 811816.
Patnaik, J. K., Das, B. S., Mishra, S. K., Mohanty, S., Satpathy, S. K. and Mohanty, D. (1994). Vascular clogging, mononuclear cell margination, and enhanced vascular permeability in the pathogenesis of human cerebral malaria. American Journal of Tropical Medicine and Hygiene 51, 642647.
Penet, M. F., Kober, F., Confort-Gouny, S., Le Fur, Y., Dalmasso, C., Coltel, N., Liprandi, A., Gulian, J. M., Grau, G. E., Cozzone, P. J. and Viola, A. (2007). Magnetic resonance spectroscopy reveals an impaired brain metabolic profile in mice resistant to cerebral malaria infected with Plasmodium berghei ANKA. Journal of Biological Chemistry 282, 1450514514.
Penet, M. F., Viola, A., Confort-Gouny, S., Le Fur, Y., Duhamel, G., Kober, F., Ibarrola, D., Izquierdo, M., Coltel, N., Gharib, B., Grau, G. E. and Cozzone, P. J. (2005). Imaging experimental cerebral malaria in vivo: significant role of ischemic brain edema. Journal of Neuroscience 25, 73527358.
Potter, S., Chan-Ling, T., Ball, H. J., Mansour, H., Mitchell, A., Maluish, L. and Hunt, N. H. (2006). Perforin mediated apoptosis of cerebral microvascular endothelial cells during experimental cerebral malaria. International Journal for Parasitology 36, 485496.
Rae, C., Mcquillan, J. A., Parekh, S. B., Bubb, W. A., Weiser, S., Balcar, V. J., Hansen, A. M., Ball, H. J. and Hunt, N. H. (2004). Brain gene expression, metabolism, and bioenergetics: interrelationships in murine models of cerebral and noncerebral malaria. FASEB Journal 18, 499510.
Randall, L. M., Amante, F. H., Mcsweeney, K. A., Zhou, Y., Stanley, A. C., Haque, A., Jones, M. K., Hill, G. R., Boyle, G. M. and Engwerda, C. R. (2008 a). Common strategies to prevent and modulate experimental cerebral malaria in mouse strains with different susceptibilities. Infection and Immunity 76, 33123320.
Randall, L. M., Amante, F. H., Zhou, Y., Stanley, A. C., Haque, A., Rivera, F., Pfeffer, K., Scheu, S., Hill, G. R., Tamada, K. and Engwerda, C. R. (2008 b). Cutting edge: selective blockade of LIGHT-lymphotoxin beta receptor signaling protects mice from experimental cerebral malaria caused by Plasmodium berghei ANKA. Journal of Immunology 181, 74587462.
Reader, J. C., Cowman, A. F., Davern, K. M., Beeson, J. G., Thompson, J. K., Rogerson, S. J. and Brown, G. V. (1999). The adhesion of Plasmodium falciparum-infected erythrocytes to chondroitin sulfate A is mediated by P. falciparum erythrocyte membrane protein 1. Proceedings of the National Academy of Sciences, USA 90, 51985202.
Renia, L., Potter, S. M., Mauduit, M., Rosa, D. S., Kayibanda, M., Deschemin, J. C., Snounou, G. and Gruner, A. C. (2006). Pathogenic T cells in cerebral malaria. International Journal for Parasitology 36, 547554.
Rest, J. R. (1982). Cerebral malaria in inbred mice. I. A new model and its pathology. Transactions of the Royal Society of Tropical Medicine and Hygiene 76, 410415.
Rogerson, S. J., Tembenu, R., Dobano, C., Plitt, S., Taylor, T. E. and Molyneux, M. E. (1999). Cytoadherence characteristics of Plasmodium falciparum-infected erythrocytes from Malawian children with severe and uncomplicated malaria. American Journal of Tropical Medicine and Hygiene 61, 467472.
Rudin, W., Eugster, H. P., Bordmann, G., Bonato, J., Muller, M., Yamage, M. and Ryffel, B. (1997). Resistance to cerebral malaria in tumor necrosis factor-alpha/beta-deficient mice is associated with a reduction of intercellular adhesion molecule-1 up-regulation and T helper type 1 response. American Journal of Pathology 150, 257266.
Saeftel, M., Krueger, A., Arriens, S., Heussler, V., Racz, P., Fleischer, B., Brombacher, F. and Hoerauf, A. (2004). Mice deficient in interleukin-4 (IL-4) or IL-4 receptor alpha have higher resistance to sporozoite infection with Plasmodium berghei (ANKA) than do naive wild-type mice. Infection and Immunity 72, 322331.
Salanti, A., Dahlback, M., Turner, L., Nielsen, M. A., Barfod, L., Magistrado, P., Jensen, A. T., Lavstsen, T., Ofori, M. F., Marsh, K., Hviid, L. and Theander, T. G. (2004). Evidence for the involvement of VAR2CSA in pregnancy-associated malaria. Journal of Experimental Medicine 200, 11971203.
Schaeffer, M., Han, S. J., Chtanova, T., Van Dooren, G. G., Herzmark, P., Chen, Y., Roysam, B., Striepen, B. and Robey, E. A. (2009). Dynamic imaging of T cell-parasite interactions in the brains of mice chronically infected with Toxoplasma gondii. Journal of Immunology 182, 63796393.
Scherf, A., Lopez-Rubio, J. J. and Riviere, L. (2008). Antigenic variation in Plasmodium falciparum. Annual Review of Microbiology 62, 445470.
Schluesener, H. J., Kremsner, P. G. and Meyermann, R. (1998). Widespread expression of MRP8 and MRP14 in human cerebral malaria by microglial cells. Acta Neuropathologica 96, 575580.
Schofield, L. and Grau, G. E. (2005). Immunological processes in malaria pathogenesis. Nature Reviews Immunology 5, 722735.
Schofield, L., Novakovic, S., Gerold, P., Schwarz, R. T., McConville, M. J. A and Tachado, S. D. (1996). Glycosylphosphatidylinositol toxin of Plasmodium up-regulates intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin expression in vascular endothelial cells and increases leukocyte and parasite cytoadherence via tyrosine kinase-dependent signal transduction. Journal of Immunology 156, 18861896.
Seydel, K. B., Milner, D. A. Jr., Kamiza, S. B., Molyneux, M. E. and Taylor, T. E. (2006). The distribution and intensity of parasite sequestration in Comatose Malawian Children. Journal of Infectious Diseases 194, 205208.
Silamut, K., Phu, N. H., Whitty, C., Turner, G. D., Louwrier, K., Mai, N. T., Simpson, J. A., Hien, T. T. and White, N. J. (1999). A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain. American Journal of Pathology 155, 395410.
Smith, J. D., Craig, A. G., Kriek, N., Hudson-Taylor, D., Kyes, S., Fagan, T., Pinches, R., Baruch, D. I., Newbold, C. I. and Miller, L. H. (2000). Identification of a Plasmodium falciparum intercellular adhesion molecule-1 binding domain: a parasite adhesion trait implicated in cerebral malaria. Proceedings of the National Academy of Sciences, USA 97, 17661771.
Srivastava, K., Cockburn, I. A., Swaim, A., Thompson, L. E., Tripathi, A., Fletcher, C. A., Shirk, E. M., Sun, H., Kowalska, M. A., Fox-Talbot, K., Sullivan, D., Zavala, F. and Morrell, C. N. (2008). Platelet factor 4 mediates inflammation in experimental cerebral malaria. Cell Host & Microbe 4, 179187.
Taylor, T. E., Fu, W. J., Carr, R. A., Whitten, R. O., Mueller, J. S., Fosiko, N. G., Lewallen, S., Liomba, N. G. and Molyneux, M. E. (2004). Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nature Medicine 10, 143145.
Teasdale, G. and Jennett, B. (1974). Assessment of coma and impaired consciousness. A practical scale. Lancet 2, 8184.
Togbe, D., De Sousa, P. L., Fauconnier, M., Boissay, V., Fick, L., Scheu, S., Pfeffer, K., Menard, R., Grau, G. E., Doan, B. T., Beloeil, J. C., Renia, L., Hansen, A. M., Ball, H. J., Hunt, N. H., Ryffel, B. and Quesniaux, V. F. (2008). Both functional LTbeta receptor and TNF receptor 2 are required for the development of experimental cerebral malaria. PLoS One 3, e2608.
Tripathi, A. K., Sha, W., Shulaev, V., Stins, M. F. and Sullivan, D. J. Jr. (2009). Plasmodium falciparum infected erythrocytes induce NF-{kappa}B regulated inflammatory pathways in human cerebral endothelium. Blood 114, 42344252.
Turner, G. D., Morrison, H., Jones, M., Davis, T. M., Looareesuwan, S., Buley, I. D., Gatter, K. C., Newbold, C. I., Pukritayakamee, S., Nagachinta, B. and et al. (1994). An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. American Journal of Pathology 145, 10571069.
Udomsangpetch, R., Pipitaporn, B., Silamut, K., Pinches, R., Kyes, S., Looareesuwan, S., Newbold, C. and White, N. J. (2002). Febrile temperatures induce cytoadherence of ring-stage Plasmodium falciparum-infected erythrocytes. Proceedings of the National Academy of Sciences, USA 99, 1182511829.
Udomsangpetch, R., Reinhardt, P. H., Schollaardt, T., Elliott, J. F., Kubes, P. and Ho, M. (1997). Promiscuity of clinical Plasmodium falciparum isolates for multiple adhesion molecules under flow conditions. Journal of Immunology 158, 43584364.
Udomsangpetch, R., Taylor, B. J., Looareesuwan, S., White, N. J., Elliott, J. F. and Ho, M. (1996). Receptor specificity of clinical Plasmodium falciparum isolates: nonadherence to cell-bound E-selectin and vascular cell adhesion molecule-1. Blood 88, 27542760.
Van Den Steen, P. E., Deroost, K., Van Aelst, I., Geurts, N., Martens, E., Struyf, S., Nie, C. Q., Hansen, D. S., Matthys, P., Van Damme, J. and Opdenakker, G. (2008). CXCR3 determines strain susceptibility to murine cerebral malaria by mediating T lymphocyte migration toward IFN-gamma-induced chemokines. European Journal of Immunology 38, 10821095.
Van Der Heyde, H. C., Nolan, J., Combes, V., Gramaglia, I. and Grau, G. E. (2006). A unified hypothesis for the genesis of cerebral malaria: sequestration, inflammation and hemostasis leading to microcirculatory dysfunction. Trends in Parasitology 22, 503508.
Van Hensbroek, M. B., Palmer, A., Onyiorah, E., Schneider, G., Jaffar, S., Dolan, G., Memming, H., Frenkel, J., Enwere, G., Bennett, S., Kwiatkowski, D. and Greenwood, B. (1996). The effect of a monoclonal antibody to tumor necrosis factor on survival from childhood cerebral malaria. Journal of Infectious Diseases 174, 10911097.
Verra, F., Mangano, V. D. and Modiano, D. (2009). Genetics of susceptibility to Plasmodium falciparum: from classical malaria resistance genes towards genome-wide association studies. Parasite Immunology 31, 234253.
Von Zur Muhlen, C., Sibson, N. R., Peter, K., Campbell, S. J., Wilainam, P., Grau, G. E., Bode, C., Choudhury, R. P. and Anthony, D. C. (2008). A contrast agent recognizing activated platelets reveals murine cerebral malaria pathology undetectable by conventional MRI. The Journal of Clinical Investigation 118, 11981207.
Walther, M., Jeffries, D., Finney, O. C., Njie, M., Ebonyi, A., Deininger, S., Lawrence, E., Ngwa-Amambua, A., Jayasooriya, S., Cheeseman, I. H., Gomez-Escobar, N., Okebe, J., Conway, D. J. and Riley, E. M. (2009). Distinct roles for FOXP3 and FOXP3 CD4 T cells in regulating cellular immunity to uncomplicated and severe Plasmodium falciparum malaria. PLoS Pathogens 5, e1000364.
Wassmer, S. C., Combes, V. and Grau, G. E. (2003). Pathophysiology of cerebral malaria: role of host cells in the modulation of cytoadhesion. Annals of the New York Academy of Science 992, 3038.
Wassmer, S. C., De Souza, J. B., Frere, C., Candal, F. J., Juhan-Vague, I. and Grau, G. E. (2006). TGF-beta1 released from activated platelets can induce TNF-stimulated human brain endothelium apoptosis: a new mechanism for microvascular lesion during cerebral malaria. Journal of Immunology 176, 11801184.
Wassmer, S. C., Lepolard, C., Traore, B., Pouvelle, B., Gysin, J. and Grau, G. E. (2004). Platelets reorient Plasmodium falciparum-infected erythrocyte cytoadhesion to activated endothelial cells. Journal of Infectious Diseases 189, 180189.
Weiser, S., Miu, J., Ball, H. J. and Hunt, N. H. (2007). Interferon-gamma synergises with tumour necrosis factor and lymphotoxin-alpha to enhance the mRNA and protein expression of adhesion molecules in mouse brain endothelial cells. Cytokine 37, 8491.
White, V. A., Lewallen, S., Beare, N. A., Molyneux, M. E. and Taylor, T. E. (2009). Retinal pathology of pediatric cerebral malaria in Malawi. PLoS One 4, e4317.
Wilson, E. H., Harris, T. H., Mrass, P., John, B., Tait, E. D., Wu, G. F., Pepper, M., Wherry, E. J., Dzierzinski, F., Roos, D., Haydon, P. G., Laufer, T. M., Weninger, W. and Hunter, C. A. (2009). Behavior of parasite-specific effector CD8+ T cells in the brain and visualization of a kinesis-associated system of reticular fibers. Immunity 30, 300311.
Yanez, D. M., Manning, D. D., Cooley, A. J., Weidanz, W. P. and Van Der Heyde, H. C. (1996). Participation of lymphocyte subpopulations in the pathogenesis of experimental murine cerebral malaria. Journal of Immunology 157, 16201624.
Yeo, T. W., Lampah, D. A., Gitawati, R., Tjitra, E., Kenangalem, E., McNeil, Y. R., Darcy, C. J., Granger, D. L., Weinberg, J. B., Lopansri, B. K., Price, R. N., Duffull, S. B., Celermajer, D. S. and Anstey, N. M. (2007). Impaired nitric oxide bioavailability and L-arginine reversible endothelial dysfunction in adults with falciparum malaria. Journal of Experimental Medicine 204, 26932704.
Yeo, T. W., Lampah, D. A., Gitawati, R., Tjitra, E., Kenangalem, E., McNeil, Y. R., Darcy, C. J., Granger, D. L., Weinberg, J. B., Lopansri, B. K., Price, R. N., Duffull, S. B., Celermajer, D. S. and Anstey, N. M. (2008). Recovery of endothelial function in severe falciparum malaria: relationship with improvement in plasma L-arginine and blood lactate concentrations. Journal of Infectious Diseases 198, 602608.
Yipp, B. G., Anand, S., Schollaardt, T., Patel, K. D., Looareesuwan, S. and Ho, M. (2000). Synergism of multiple adhesion molecules in mediating cytoadherence of Plasmodium falciparum-infected erythrocytes to microvascular endothelial cells under flow. Blood 96, 22922298.
Yoeli, M. and Hargreaves, B. J. (1974). Brain capillary blockage produced by a virulent strain of rodent malaria. Science 184, 572573.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Parasitology
  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed