Skip to main content Accessibility help

Mucosal microbial parasites/symbionts in health and disease: an integrative overview

  • Robert P. Hirt (a1)


Microbial parasites adapted to thrive at mammalian mucosal surfaces have evolved multiple times from phylogenetically distant lineages into various extracellular and intracellular life styles. Their symbiotic relationships can range from commensalism to parasitism and more recently some host–parasites interactions are thought to have evolved into mutualistic associations too. It is increasingly appreciated that this diversity of symbiotic outcomes is the product of a complex network of parasites–microbiota–host interactions. Refinement and broader use of DNA based detection techniques are providing increasing evidence of how common some mucosal microbial parasites are and their host range, with some species being able to swap hosts, including from farm and pet animals to humans. A selection of examples will illustrate the zoonotic potential for a number of microbial parasites and how some species can be either disruptive or beneficial nodes in the complex networks of host–microbe interactions disrupting or maintaining mucosal homoeostasis. It will be argued that mucosal microbial parasitic diversity will represent an important resource to help us dissect through comparative studies the role of host–microbe interactions in both human health and disease.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Mucosal microbial parasites/symbionts in health and disease: an integrative overview
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Mucosal microbial parasites/symbionts in health and disease: an integrative overview
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Mucosal microbial parasites/symbionts in health and disease: an integrative overview
      Available formats


Corresponding author

Author for correspondence: Robert P. Hirt, E-mail:


Hide All
Amato, KR (2016) Incorporating the gut microbiota into models of human and non-human primate ecology and evolution. American Journal of Physical Anthropology 159, S196S215.
Amin, A, Bilic, I, Liebhart, D and Hess, M (2014) Trichomonads in birds – a review. Parasitology 141, 733747.
Baker, JL, Bor, B, Agnello, M, Shi, W and He, X (2017) Ecology of the oral microbiome: beyond bacteria. Trends in Microbiology 25, 362374.
Bakshani, CR, Morales-Garcia, AL, Althaus, M, Wilcox, MD, Pearson, JP, Bythell, JC and Burgess, JG (2018) Evolutionary conservation of the antimicrobial function of mucus: a first defence against infection. Npj Biofilms and Microbiomes 4, 14.
Bar, AK, Phukan, N, Pinheiro, J and Simoes-Barbosa, A (2015) The interplay of host microbiota and parasitic protozoans at mucosal interfaces: implications for the outcomes of infections and diseases. PLoS Neglected Tropical Diseases 9, e0004176.
Bartley, PM, Roehe, BK, Thomson, S, Shaw, HJ, Peto, F, Innes, EA and Katzer, F (2018) Detection of potentially human infectious assemblages of Giardia duodenalis in fecal samples from beef and dairy cattle in Scotland. Parasitology, 18. doi: 10.1017/S0031182018001117.
Belkaid, Y and Hand, TW (2014) Role of the microbiota in immunity and inflammation. Cell 157, 121141.
Benabdelkader, S, Andreani, J, Gillet, A, Terrer, E, Pignoly, M, Chaudet, H, Aboudharam, G and La Scola, B (2019) Specific clones of Trichomonas tenax are associated with periodontitis. PLoS ONE 14, e0213338.
Birchenough, G and Hansson, GC (2017) Bacteria tell us how to protect our intestine. Cell Host & Microbe 22, 34.
Brosh-Nissimov, T, Hindiyeh, M, Azar, R, Smollan, G, Belausov, N, Mandelboim, M, Rahav, G, Keller, N and Gefen-Halevi, S (2019) A false-positive Trichomonas vaginalis result due to Trichomonas tenax presence in clinical specimens may reveal a possible T. tenax urogenital infection. Clinical Microbiology and Infection 25, 123124.
Burgess, SL, Gilchrist, CA, Lynn, TC and Petri, WA Jr (2017) Parasitic protozoa and interactions with the host intestinal microbiota. Infection and Immunity 85, e00101-17.
Cani, PD and de Vos, WM (2017) Next-generation beneficial microbes: the case of Akkermansia muciniphila. Frontiers in Microbiology 8, 1765.
Chabe, M, Lokmer, A and Segurel, L (2017) Gut protozoa: friends or foes of the human gut microbiota? Trends in Parasitology 33, 925934.
Chabra, A, Rahimi-Esboei, B, Habibi, E, Monadi, T, Azadbakht, M, Elmi, T, Keshavarz, valian H, Akhtari, J, Fakhar, M and Naghshvar, F (2019) Effects of some natural products from fungal and herbal sources on Giardia lamblia in vivo. Parasitology 146, 11881198.
Chapwanya, A, Usman, AY and Irons, PC (2016) Comparative aspects of immunity and vaccination in human and bovine trichomoniasis: a review. Tropical Animal Health and Production 48, 17.
Chihi, A, Stensvold, CR, Ben-Abda, I, Ben-Romdhane, R, Aoun, K, Siala, E and Bouratbine, A (2019) Development and evaluation of molecular tools for detecting and differentiating intestinal amoebae in healthy individuals. Parasitology, 17. doi: 10.1017/S0031182018002196.
Chow, J, Tang, H and Mazmanian, SK (2011) Pathobionts of the gastrointestinal microbiota and inflammatory disease. Current Opinion in Immunology 23, 473480.
Chudnovskiy, A, Mortha, A, Kana, V, Kennard, A, Ramirez, JD, Rahman, A, Remark, R, Mogno, I, Ng, R, Gnjatic, S, Amir, ED, Solovyov, A, Greenbaum, B, Clemente, J, Faith, J, Belkaid, Y, Grigg, ME and Merad, M (2016) Host-protozoan interactions protect from mucosal infections through activation of the inflammasome. Cell, 167, 444456. e414.
Clemente, JC, Ursell, LK, Parfrey, LW and Knight, R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148, 12581270.
Collins, N and Belkaid, Y (2018) Do the microbiota influence vaccines and protective immunity to pathogens? Engaging our endogenous adjuvants. Cold Spring Harbor Perspectives in Biology 10, a028860.
Corfield, AP (2018) The interaction of the gut microbiota with the mucus barrier in health and disease in human. Microorganisms 6, E78.
Cortes, A, Toledo, R and Cantacessi, C (2018) Classic models for New perspectives: delving into Helminth-microbiota-immune system interactions. Trends in Parasitology 34, 640654.
Davenport, ER, Sanders, JG, Song, SJ, Amato, KR, Clark, AG and Knight, R (2017) The human microbiome in evolution. BMC Biology 15, 127.
Dean, P, Hirt, RP and Embley, TM (2016) Microsporidia: why make nucleotides if you can steal them? PLoS Pathogens 12, e1005870.
Deere, JR, Parsons, MB, Lonsdorf, EV, Lipende, I, Kamenya, S, Collins, DA, Travis, DA and Gillespie, TR (2018) Entamoeba histolytica infection in humans, chimpanzees and baboons in the Greater Gombe Ecosystem, Tanzania. Parasitology, 17. doi: 10.1017/S0031182018001397.
Deitsch, KW, Lukehart, SA and Stringer, JR (2009) Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nature Reviews Microbiology 7, 493503.
Desai, MS, Seekatz, AM, Koropatkin, NM, Kamada, N, Hickey, CA, Wolter, M, Pudlo, NA, Kitamoto, S, Terrapon, N, Muller, A, Young, VB, Henrissat, B, Wilmes, P, Stappenbeck, TS, Nunez, G and Martens, EC (2016) A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 13391353. e1321.
Dessi, D, Margarita, V, Cocco, AR, Marongiu, A, Fiori, PL and Rappelli, P (2019) Trichomonas vaginalis and Mycoplasma hominis: new tales of two old friends. Parasitology, 16. doi: 10.1017/S0031182018002135.
Farthing, MJ (2006) Treatment options for the eradication of intestinal protozoa. Nature Clinical Practice. Gastroenterology & Hepatology 3, 436445.
Ferreiro, A, Crook, N, Gasparrini, AJ and Dantas, G (2018) Multiscale evolutionary dynamics of host-associated microbiomes. Cell 172, 12161227.
Fichorova, R, Fraga, J, Rappelli, P and Fiori, PL (2017) Trichomonas vaginalis infection in symbiosis with Trichomonasvirus and Mycoplasma. Research in Microbiology 168, 882891.
Gargantini, PR, Serradell, MDC, Rios, DN, Tenaglia, AH and Lujan, HD (2016) Antigenic variation in the intestinal parasite Giardia lamblia. Current Opinion in Microbiology 32, 5258.
Gomez-Arreaza, A, Haenni, AL, Dunia, I and Avilan, L (2017) Viruses of parasites as actors in the parasite-host relationship: a ‘menage a trois’. Acta Tropica 166, 126132.
Gorla, SK, McNair, NN, Yang, G, Gao, S, Hu, M, Jala, VR, Haribabu, B, Striepen, B, Cuny, GD, Mead, JR and Hedstrom, L (2014) Validation of IMP dehydrogenase inhibitors in a mouse model of cryptosporidiosis. Antimicrobial Agents and Chemotherapy 58, 16031614.
Gough, R, Ellis, J and Stark, D (2019) Comparison and recommendations for the use of Dientamoeba fragilis real-time PCR assays. Journal of Clinical Microbiology 57, e01466-18.
Hinderfeld, AS, Phukan, N, Bar, AK, Roberton, AM and Simoes-Barbosa, A (2019) Cooperative interactions between Trichomonas vaginalis and associated bacteria enhance paracellular permeability of the cervicovaginal epithelium by dysregulating tight junctions. Infection and Immunity 87, e00141-19.
Hirt, RP and Sherrard, J (2015) Trichomonas vaginalis origins, molecular pathobiology and clinical considerations. Current Opinion in Infectious Diseases 28, 7279.
Hooks, KB and O'Malley, MA (2017) Dysbiosis and its discontents. MBio 8, e01492-17.
Horton, B, Bridle, H, Alexander, CL and Katzer, F (2019) Giardia duodenalis in the UK: current knowledge of risk factors and public health implications. Parasitology 146, 413424.
Hupalo, DN, Bradic, M and Carlton, JM (2015) The impact of genomics on population genetics of parasitic diseases. Current Opinion in Microbiology 23, 4954.
Kellerova, P and Tachezy, J (2017) Zoonotic Trichomonas tenax and a new trichomonad species, Trichomonas brixi n. sp., from the oral cavities of dogs and cats. International Journal for Parasitology 47, 247255.
Khan, A, Shaik, JS and Grigg, ME (2018) Genomics and molecular epidemiology of Cryptosporidium species. Acta Tropica 184, 114.
Kissinger, P (2015) Trichomonas vaginalis: a review of epidemiologic, clinical and treatment issues. BMC Infectious Diseases 15, 307.
Labruyere, E, Thibeaux, R, Olivo-Marin, JC and Guillen, N (2017) Crosstalk between Entamoeba histolytica and the human intestinal tract during amoebiasis. Parasitology, 110. doi: 10.1017/S0031182017002190.
Leitsch, D (2017) A review on metronidazole: an old warhorse in antimicrobial chemotherapy. Parasitology, 112. doi: 10.1017/S0031182017002025.
Lemieux, MW, Sonzogni-Desautels, K and Ndao, M (2017) Lessons learned from protective immune responses to optimize vaccines against cryptosporidiosis. Pathogens (Basel, Switzerland) 7, E2.
Levy, M, Kolodziejczyk, AA, Thaiss, CA and Elinav, E (2017) Dysbiosis and the immune system. Nature Reviews Immunology 17, 219232.
Liu, H, Xu, N, Yin, J, Yuan, Z, Shen, Y and Cao, J (2019) Prevalence and multilocus genotyping of potentially zoonotic Giardia duodenalis in pigs in Shanghai, China. Parasitology 146, 11991205.
Loke, P and Lim, YAL (2016) A commensal protozoan strikes a balance in the gut. Cell Host & Microbe 20, 417419.
Lokmer, A, Cian, A, Froment, A, Gantois, N, Viscogliosi, E, Chabe, M and Segurel, L (2019) Use of shotgun metagenomics for the identification of protozoa in the gut microbiota of healthy individuals from worldwide populations with various industrialization levels. PLoS ONE 14, e0211139.
Lukes, J, Stensvold, CR, Jirku-Pomajbikova, K and Wegener Parfrey, L (2015) Are human intestinal eukaryotes beneficial or commensals? PLoS Pathogens 11, e1005039.
Lycke, N (2012) Recent progress in mucosal vaccine development: potential and limitations. Nature Reviews Immunology 12, 592605.
Maritz, JM, Land, KM, Carlton, JM and Hirt, RP (2014) What is the importance of zoonotic trichomonads for human health? Trends in Parasitology 30, 333341.
Martinez-Diaz, RA, Ponce-Gordo, F, Rodriguez-Arce, I, del Martinez-Herrero, MC, Gonzalez, FG, Molina-Lopez, RA and Gomez-Munoz, MT (2015) Trichomonas gypaetinii n. sp., a new trichomonad from the upper gastrointestinal tract of scavenging birds of prey. Parasitology Research 114, 101112.
Marty, M, Lemaitre, M, Kemoun, P, Morrier, JJ and Monsarrat, P (2017) Trichomonas tenax and periodontal diseases: a concise review. Parasitology 144, 14171425.
Mercer, F and Johnson, PJ (2018) Trichomonas vaginalis: pathogenesis, symbiont interactions, and host cell immune responses. Trends in Parasitology 34, 683693.
Miranda-Ozuna, JFT, Rivera-Rivas, LA, Cardenas-Guerra, RE, Hernandez-Garcia, MS, Rodriguez-Cruz, S, Gonzalez-Robles, A, Chavez-Munguia, B and Arroyo, R (2019) Glucose-restriction increases Trichomonas vaginalis cellular damage towards HeLa cells and proteolytic activity of cysteine proteinases (CPs), such as TvCP2. Parasitology, 111. doi: 10.1017/S0031182019000209.
Petersen, C and Round, JL (2014) Defining dysbiosis and its influence on host immunity and disease. Cellular Microbiology 16, 10241033.
Pindak, FF, Mora de Pindak, M, Hyde, BM and Gardner, WA Jr (1989). Acquisition and retention of viruses by Trichomonas vaginalis. Genitourinary Medicine 65, 366371.
Pinheiro, J, Biboy, J, Vollmer, W, Hirt, RP, Keown, JR, Artuyants, A, Black, MM, Goldstone, DC and Simoes-Barbosa, A (2018) The protozoan Trichomonas vaginalis targets bacteria with laterally acquired NlpC/P60 peptidoglycan hydrolases. MBio 9, e01784-18.
Price, LB, Hungate, BA, Koch, BJ, Davis, GS and Liu, CM (2017) Colonizing opportunistic pathogens (COPs): the beasts in all of us. PLoS Pathogens 13, e1006369.
Rendon-Maldonado, J, Espinosa-Cantellano, M, Soler, C, Torres, JV and Martinez-Palomo, A (2003) Trichomonas vaginalis: in vitro attachment and internalization of HIV-1 and HIV-1-infected lymphocytes. Journal of Eukaryotic Microbiology 50, 4348.
Rivero, FD, Saura, A, Prucca, CG, Carranza, PG, Torri, A and Lujan, HD (2010) Disruption of antigenic variation is crucial for effective parasite vaccine. Nature Medicine 16, 551557, 551p following 557.
Rook, G, Backhed, F, Levin, BR, McFall-Ngai, MJ and McLean, AR (2017) Evolution, human-microbe interactions, and life history plasticity. Lancet 390, 521530.
Rowan-Nash, AD, Korry, BJ, Mylonakis, E and Belenky, P (2019) Cross-domain and viral interactions in the microbiome. Microbiology and Molecular Biology Reviews 83, e00044-18.
Rush, G, Reynolds, MW, Calvani, NED and Slapeta, J (2019) Addressing the constraints of Tritrichomonas foetus sample collection in remote areas: lyophilized modified Diamond's media as a substitute for liquid medium. Parasitology, 14. doi: 10.1017/S0031182019000258.
Ryan, U, Paparini, A and Oskam, C (2017) New technologies for detection of enteric parasites. Trends in Parasitology 33, 532546.
Schroder, K and Bosch, TC (2016) The origin of mucosal immunity: lessons from the holobiont hydra. MBio 7, e01184-16.
Serradell, MC, Saura, A, Rupil, LL, Gargantini, PR, Faya, MI, Furlan, PJ and Lujan, HD (2016) Vaccination of domestic animals with a novel oral vaccine prevents Giardia infections, alleviates signs of giardiasis and reduces transmission to humans. NPJ Vaccines 1, 16018.
Serradell, MC, Rupil, LL, Martino, RA, Prucca, CG, Carranza, PG, Saura, A, Fernandez, EA, Gargantini, PR, Tenaglia, AH, Petiti, JP, Tonelli, RR, Reinoso-Vizcaino, N, Echenique, J, Berod, L, Piaggio, E, Bellier, B, Sparwasser, T, Klatzmann, D and Lujan, HD (2019) Efficient oral vaccination by bioengineering virus-like particles with protozoan surface proteins. Nature Communications 10, 361.
Smith, PD, MacDonald, TT and Blumberg, RS (2013) Phylogeny of the mucosal immune system. In Smith, PD, MacDonald, TT and Blumberg, RS (eds), Principles of Mucosal Immunology. London: Garland Science/Taylor & Francis Group, pp. 1926.
Stensvold, CR (2019) Pinning down the role of common luminal intestinal parasitic protists in human health and disease – status and challenges. Parasitology, 17. doi: 10.1017/S0031182019000039.
Stensvold, CR and van der Giezen, M (2018) Associations between gut microbiota and common luminal intestinal parasites. Trends in Parasitology 34, 369377.
Stentiford, GD, Becnel, J, Weiss, LM, Keeling, PJ, Didier, ES, Williams, BP, Bjornson, S, Kent, ML, Freeman, MA, Brown, MJF, Troemel, ER, Roesel, K, Sokolova, Y, Snowden, KF and Solter, L (2016) Microsporidia – emergent pathogens in the global food chain. Trends in Parasitology 32, 336348.
Thi Trung Thu, T, Margarita, V, Cocco, AR, Marongiu, A, Dessi, D, Rappelli, P and Fiori, PL (2018) Trichomonas vaginalis transports virulent Mycoplasma hominis and transmits the infection to human cells after Metronidazole treatment: a potential role in bacterial Invasion of fetal membranes and amniotic fluid. Journal of Pregnancy 2018, 5037181.
van Gestel, RS, Kusters, JG and Monkelbaan, JF (2018) A clinical guideline on Dientamoeba fragilis infections. Parasitology 19. doi: 10.1017/S0031182018001385.
Vargas Rigo, G, Petro-Silveira, B, Devereux, M, McCann, M, Souza Dos Santos, AL and Tasca, T (2018) Anti-Trichomonas vaginalis activity of 1,10-phenanthroline-5,6-dione-based metallodrugs and synergistic effect with metronidazole. Parasitology, 15. doi: 10.1017/S003118201800152X.
Victor, Midlej, Felipe, Rubim, Wilmer, Villarreal, Érica, S. Martins-Duarte, Maribel, Navarro, Wanderley de, Souza and Marlene, Benchimol (2019) Zinc-clotrimazole complexes are effective against Trichomonas vaginali. Parasitology 146, 12061216.
Wypych, TP and Marsland, BJ (2018) Antibiotics as instigators of microbial dysbiosis: implications for asthma and allergy. Trends in Immunology 39, 697711.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed