Skip to main content Accessibility help

Transparency in Hungarian vowel harmony*

  • Catherine O. Ringen (a1)

Phonologists have known for some time that the so-called ‘standard’ theory of generative phonology is not adequate for the analysis of vowel harmony. Ringen (1975, 1977, 1980) suggests that some of the problems can be solved by abandoning the assumption that phonological representations are fully specified. Clements (1977b, 1980) suggests that vowel harmony should be analysed autosegmentally. Underspecification theory, developed in the recent work of Kiparsky, Archangeli and Pulleyblank, incorporates both of these proposals. This paper considers how Hungarian can be analysed within this theory. It is shown that by adopting Goldsmith's (1985) proposal that vowel harmony in Hungarian involves the spreading of the feature [−back], the transparent (neutral) vowels in Hungarian are derived because the redundancy rule assigning [−back] to these vowels, although available, does not apply early in the derivation because its structural description is not met.

Hide All
Archangeli, D. (1984). Underspecification in Yawelmani phonology and morphology. PhD dissertation, MIT. Published 1988, New York: Garland.
Archangeli, D. & Pulleyblank, D. (1987). Maximal and minimal rules: effects of tier scansion. NELS 17. 1635.
Archangeli, D. & Pulleyblank, D. (forthcoming a). The content and structure of phonological representations. Cambridge, Mass.: MIT Press.
Archangeli, D. & Pulleyblank, D. (forthcoming b). Yoruba vowel harmony. LI.
Booij, G. (1984). Neutral vowels and the autosegmental analysis of Hungarian vowel harmony. Linguistics 22. 629641.
Bosch, A., Need, B. & Schiller, E. (eds.) (1987). Papers from the parasession on autosegmental and metrical phonology. Chicago: Chicago Linguistic Society.
Clements, G. (1977a). Neutral vowels in Hungarian vowel harmony: an autosegmental interpretation. NELS 7. 4964.
Clements, G. (1977b). The autosegmental treatment of vowel harmony. In Dressier & Pfeiffer (1977). 111119.
Clements, G. (1980). Vowel harmony in nonlinear generative phonology: an autosegmental model. Indiana University Linguistics Club.
Clements, G. (1985). The geometry of phonological features. PhY 2. 225252.
Dressier, W. & Pfeiffer, O. (eds.) (1977). Phonologica 1976. Innsbruck: Innsbrucker Beiträge zur Sprachwissenchaft.
Ewen, C. & Van Der Hulst, H. (1985). Single-valued features and the non-linear analysis of vowel harmony. In Bennis, H. & Beukema, F. (eds.) Linguistics in the Netherlands 1985. Dordrecht: Foris. 3948.
Farkas, D. & Beddor, P. (1987). Private and equipollent backness in Hungarian. In Bosch, et al. (1987). 90105.
Goldsmith, J. (1976). Autosegmental phonology. PhD dissertation, MIT. Published 1979, New York: Garland.
Goldsmith, J. (1985). Vowel harmony in Khalkha Mongolian, Yaka, Finnish and Hungarian. PhY 2. 253275.
Goldsmith, J. (1987). Vowel systems. In Bosch, et al. (1987). 116133.
Hulst, H. Van Der (1985). Vowel harmony in Hungarian: a comparison of segmental and autosegmental analysis. In van der Hulst, H. & Smith, N. (eds.) Advances in nonlinear phonology. Dordrecht: Foris. 267303.
Hulst, H. Van Der & Smith, N. (1986). On neutral vowels. In Bogers, K., van der Hulst, H. & Mous, M. (eds.) The phonological representation of suprasegmentals. Dordrecht: Foris. 233279.
Kiparsky, P. (1973). ‘Elsewhere’ in phonology. In Anderson, S. and Kiparsky, P. (eds.) A Festschrift for Morris Halle. New York: Holt, Rinehart & Winston. 93106.
Kiparsky, P. (1981). Vowel harmony. Ms, Stanford University.
Kiparsky, P. (1985). Some consequences of Lexical Phonology. PhY 2. 85138.
Kontra, M. & Ringen, C. (1986). Vowel harmony: the evidence from loanwords. Ural-Altaic Yearbook. 114.
Kontra, M. & Ringen, C. (1987). Stress and harmony in Hungarian loanwords. In Rédei, K. (ed.) Studien zur Phonologie und Morphonologie der uralischen Sprachen. Vienna: Verband der Wissenschaftliche Gesellschafte Österreichs. 8196.
Kornai, A. (1987). Hungarian vowel harmony. WCCFL 6. 147161.
Levergood, B. (1984). Rule governed vowel harmony and the strict cycle. NELS 14. 275293.
McCarthy, J. (1984). Theoretical consequences of Montañes vowel harmony. LI 15. 291318.
Pulleyblank, D. (1986). Tone in Lexical Phonology. Dordrecht: Reidel.
Ringen, C. (1975). Vowel harmony: theoretical implications. PhD dissertation, Indiana University. Published 1988, New York: Garland.
Ringen, C. (1977). Vowel harmony: implications for the alternation condition. In Dressier & Pfeiffer (1977). 127132.
Ringen, C. (1978). Another view of the theoretical implications of Hungarian vowel harmony. LI 9. 105115.
Ringen, C. (1980). A concrete analysis of Hungarian vowel harmony. In Vago (1980b). 135154.
Ringen, C. & Kontra, M. (1988). Hungarian neutral vowels. Ms, University of Iowa and Hungarian Academy of Sciences.
Sanders, G. (1974). Precedence relations in language. Foundations of Language II. 361400.
Steriade, D. (1987). Redundant values. In Bosch, et al. (1987). 339362.
Vago, R. (1976). Theoretical implications of vowel harmony. LI 7. 243263.
Vago, R. (1980a). A critique of suprasegmental theories of vowel harmony. In Vago (1980b). 155183.
Vago, R. (ed.) (1980b). Issues in vowel harmony. Amsterdam: John Benjamins.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0952-6757
  • EISSN: 1469-8188
  • URL: /core/journals/phonology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed