Skip to main content Accessibility help

Intestinal bile acid receptors are key regulators of glucose homeostasis

  • Mohamed-Sami Trabelsi (a1), Sophie Lestavel (a2), Bart Staels (a2) and Xavier Collet (a1)


In addition to their well-known function as dietary lipid detergents, bile acids have emerged as important signalling molecules that regulate energy homeostasis. Recent studies have highlighted that disrupted bile acid metabolism is associated with metabolism disorders such as dyslipidaemia, intestinal chronic inflammatory diseases and obesity. In particular, type 2 diabetes (T2D) is associated with quantitative and qualitative modifications in bile acid metabolism. Bile acids bind and modulate the activity of transmembrane and nuclear receptors (NR). Among these receptors, the G-protein-coupled bile acid receptor 1 (TGR5) and the NR farnesoid X receptor (FXR) are implicated in the regulation of bile acid, lipid, glucose and energy homeostasis. The role of these receptors in the intestine in energy metabolism regulation has been recently highlighted. More precisely, recent studies have shown that FXR is important for glucose homeostasis in particular in metabolic disorders such as T2D and obesity. This review highlights the growing importance of the bile acid receptors TGR5 and FXR in the intestine as key regulators of glucose metabolism and their potential as therapeutic targets.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Intestinal bile acid receptors are key regulators of glucose homeostasis
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Intestinal bile acid receptors are key regulators of glucose homeostasis
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Intestinal bile acid receptors are key regulators of glucose homeostasis
      Available formats


Corresponding author

* Corresponding author: M.-S. Trabelsi, email


Hide All
1. Pandak, WM, Bohdan, P, Franklund, C et al. (2001) Expression of sterol 12alpha-hydroxylase alters bile acid pool composition in primary rat hepatocytes and in vivo . Gastroenterology 120, 18011809.
2. Li-Hawkins, J, Gåfvels, M, Olin, M et al. (2002) Cholic acid mediates negative feedback regulation of bile acid synthesis in mice. J Clin Invest 110, 11911200.
3. Schwarz, M, Russell, DW, Dietschy, JM et al. (2001) Alternate pathways of bile acid synthesis in the cholesterol 7 alpha-hydroxylase knockout mouse are not upregulated by either cholesterol or cholestyramine feeding. J Lipid Res 42, 15941603.
4. Luchoomun, J & Hussain, MM (1999) Assembly and secretion of chylomicrons by differentiated Caco-2 cells. Nascent triglycerides and preformed phospholipids are preferentially used for lipoprotein assembly. J Biol Chem 274, 1956519572.
5. Hagenbuch, B & Meier, PJ (2004) Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflüg Arch 447, 653665.
6. Mazuy, C, Helleboid, A, Staels, B et al. (2015) Nuclear bile acid signaling through the farnesoid X receptor. Cell Mol Life Sci 72, 16311650.
7. Prawitt, J, Caron, S & Staels, B (2011) Bile acid metabolism and the pathogenesis of type 2 diabetes. Curr Diab Rep 11, 160166.
8. de Aguiar Vallim, TQ, Tarling, EJ & Edwards, PA (2013) Pleiotropic roles of bile acids in metabolism. Cell Metab 17, 657669.
9. Dey, N, Wagner, VE, Blanton, LV et al. (2015) Regulators of gut motility revealed by a gnotobiotic model of diet-microbiome interactions related to travel. Cell 163, 95107.
10. Rolo, AP, Palmeira, CM, Holy, JM et al. (2004) Role of mitochondrial dysfunction in combined bile acid-induced cytotoxicity: the switch between apoptosis and necrosis. Toxicol Sci 79, 196204.
11. Morgan, WA, Nk, T & Ding, Y (2008) The use of high performance thin-layer chromatography to determine the role of membrane lipid composition in bile salt-induced kidney cell damage. J Pharmacol Toxicol Methods 57, 7073.
12. Perez, M-J & Briz, O (2009) Bile-acid-induced cell injury and protection. World J Gastroenterol 15, 16771689.
13. Prawitt, J & Staels, B (2010) Bile acid sequestrants: glucose-lowering mechanisms. Metab Syndr Relat Disord 8, Suppl. 1, S3S8.
14. Kawamata, Y, Fujii, R, Hosoya, M et al. (2003) A G protein-coupled receptor responsive to bile acids. J Biol Chem 278, 94359440.
15. Maruyama, T, Tanaka, K, Suzuki, J et al. (2006) Targeted disruption of G protein-coupled bile acid receptor 1 (Gpbar1/M-Bar) in mice. J Endocrinol 191, 197205.
16. Watanabe, M, Houten, SM, Mataki, C et al. (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484489.
17. Briere, DA, Ruan, X, Cheng, CC et al. (2015) novel small molecule agonist of tgr5 possesses anti-diabetic effects but causes gallbladder filling in mice. PLoS ONE 10, e0136873.
18. Harach, T, Pols, TWH, Nomura, M et al. (2012) TGR5 potentiates GLP-1 secretion in response to anionic exchange resins. Sci Rep 2, 430.
19. Li, T, Holmstrom, SR, Kir, S et al. (2011) The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling. Mol Endocrinol 25, 10661071.
20. Donepudi, AC, Boehme, S, Li, F et al. (2016) G-protein-coupled bile acid receptor plays a key role in bile acid metabolism and fasting-induced hepatic steatosis in mice. Hepatology. [Epublication ahead of print version]
21. Lou, G, Ma, X, Fu, X et al. (2014) GPBAR1/TGR5 mediates bile acid-induced cytokine expression in murine Kupffer cells. PLoS ONE 9, e93567.
22. Alemi, F, Poole, DP, Chiu, J et al. (2013) The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 144, 145154.
23. Kidd, M, Modlin, IM, Gustafsson, BI et al. (2008) Luminal regulation of normal and neoplastic human EC cell serotonin release is mediated by bile salts, amines, tastants, and olfactants. Am J Physiol Gastrointest Liver Physiol 295, G260G272.
24. Grider, JR (2003) Neurotransmitters mediating the intestinal peristaltic reflex in the mouse. J Pharmacol Exp Ther 307, 460467.
25. Grider, JR, Piland, BE, Gulick, MA et al. (2006) Brain-derived neurotrophic factor augments peristalsis by augmenting 5-HT and calcitonin gene-related peptide release. Gastroenterology 130, 771780.
26. Seol, W, Choi, HS & Moore, DD (1995) Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. Mol Endocrinol 9, 7285.
27. Forman, BM, Goode, E, Chen, J et al. (1995) Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 81, 687693.
28. Wang, H, Chen, J, Hollister, K et al. (1999) Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 3, 543553.
29. Mangelsdorf, DJ, Thummel, C, Beato, M et al. (1995) The nuclear receptor superfamily: the second decade. Cell 83, 835939.
30. Zhang, Y, Kast-Woelbern, HR & Edwards, PA (2003) Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation. J Biol Chem 278, 104110.
31. Hu, X, Bonde, Y, Eggertsen, G et al. (2014) Muricholic bile acids are potent regulators of bile acid synthesis via a positive feedback mechanism. J Intern Med 275, 2738.
32. Sayin, SI, Wahlström, A, Felin, J et al. (2013) Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17, 225235.
33. Campana, G, Pasini, P, Roda, A et al. (2005) Regulation of ileal bile acid-binding protein expression in Caco-2 cells by ursodeoxycholic acid: role of the farnesoid X receptor. Biochem Pharmacol 69, 17551763.
34. Sinal, CJ, Tohkin, M, Miyata, M et al. (2000) Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102, 731744.
35. Lu, TT, Makishima, M, Repa, JJ et al. (2000) Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 6, 507515.
36. Sanyal, S, Båvner, A, Haroniti, A et al. (2007) Involvement of corepressor complex subunit GPS2 in transcriptional pathways governing human bile acid biosynthesis. Proc Natl Acad Sci USA 104, 1566515770.
37. Lefebvre, P, Cariou, B, Lien, F et al. (2009) Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev 89, 147191.
38. Chen, F, Ma, L, Dawson, PA et al. (2003) Liver receptor homologue-1 mediates species- and cell line-specific bile acid-dependent negative feedback regulation of the apical sodium-dependent bile acid transporter. J Biol Chem 278, 1990919916.
39. Hwang, ST, Urizar, NL, Moore, DD et al. (2002) Bile acids regulate the ontogenic expression of ileal bile acid binding protein in the rat via the farnesoid X receptor. Gastroenterology 122, 14831492.
40. Boyer, JL, Trauner, M, Mennone, A et al. (2006) Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTalpha-OSTbeta in cholestasis in humans and rodents. Am J Physiol Gastrointest Liver Physiol 290, G1124G1130.
41. Lee, H, Zhang, Y, Lee, FY et al. (2006) FXR regulates organic solute transporters alpha and beta in the adrenal gland, kidney, and intestine. J Lipid Res 47, 201214.
42. Markan, KR & Potthoff, MJ (2016) Metabolic fibroblast growth factors (FGFs): mediators of energy homeostasis. Semin Cell Dev Biol 53, 8593.
43. Owen, BM, Mangelsdorf, DJ & Kliewer, SA (2015) Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol Metab 26, 2229.
44. Baggio, LL & Drucker, DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132, 21312157.
45. Ward, C (2016) Metabolism, insulin and other hormones – Diapedia (Internet). Available from (accessed August 2016).
46. Parker, HE, Adriaenssens, A, Rogers, G et al. (2012) Predominant role of active versus facilitative glucose transport for glucagon-like peptide-1 secretion. Diabetologia 55, 24452455.
47. Reimann, F, Habib, AM, Tolhurst, G et al. (2008) Glucose sensing in L cells: a primary cell study. Cell Metab 8, 532539.
48. Gorboulev, V, Schürmann, A, Vallon, V et al. (2012) Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61, 187196.
49. Kuhre, RE, Frost, CR, Svendsen, B et al. (2015) Molecular mechanisms of glucose-stimulated GLP-1 secretion from perfused rat small intestine. Diabetes 64, 370382.
50. Daoudi, M, Hennuyer, N, Borland, MG et al. (2011) PPARβ/δ activation induces enteroendocrine L cell GLP-1 production. Gastroenterology 140, 15641574.
51. Trabelsi, M-S, Daoudi, M, Prawitt, J et al. (2015) Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat Commun 6, 7629.
52. Habib, AM, Richards, P, Cairns, LS et al. (2012) Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. Endocrinology 153, 30543065.
53. Filhoulaud, G, Guilmeau, S, Dentin, R et al. (2013) Novel insights into ChREBP regulation and function. Trends Endocrinol Metab 24, 257268.
54. Vallim, TQ & Edwards, PA (2009) Bile acids have the gall to function as hormones. Cell Metab 10, 162164.
55. Thomas, C, Gioiello, A, Noriega, L et al. (2009) TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 10, 167177.
56. Potthoff, MJ, Potts, A, He, T et al. (2013) Colesevelam suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice. Am J Physiol Gastrointest Liver Physiol 304, G371G380.
57. Bala, V, Rajagopal, S, Kumar, DP et al. (2014) Release of GLP-1 and PYY in response to the activation of G protein-coupled bile acid receptor TGR5 is mediated by Epac/PLC-ε pathway and modulated by endogenous H2S. Front Physiol 5, 420.
58. Brighton, CA, Rievaj, J, Kuhre, RE et al. (2015) Bile acids trigger GLP-1 release predominantly by accessing basolaterally located G protein-coupled bile acid receptors. Endocrinology 156, 39613970.
59.World Health Organization (2016) Obesity and Overweight: Fact Sheet. (accessed September 2016).
60.World Health Organization (2016) Diabetes: Fact sheet (accessed September 2016).
61. Huang, PL (2009) A comprehensive definition for metabolic syndrome. Dis Model Mech 2, 231237.
62. Bennion, LJ & Grundy, SM (1977) Effects of diabetes mellitus on cholesterol metabolism in man. N Engl J Med 296, 13651371.
63. Abrams, JJ, Ginsberg, H & Grundy, SM (1982) Metabolism of cholesterol and plasma triglycerides in nonketotic diabetes mellitus. Diabetes 31, 903910.
64. Brufau, G, Stellaard, F, Prado, K et al. (2010) Improved glycemic control with colesevelam treatment in patients with type 2 diabetes is not directly associated with changes in bile acid metabolism. Hepatology 52, 14551464.
65. Suhre, K, Meisinger, C, Döring, A et al. (2010) Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS ONE 5, e13953.
66. Sonne, DP, van Nierop, FS, Kulik, W et al. (2016) Postprandial plasma concentrations of individual bile acids and FGF-19 in patients with type 2 diabetes. J Clin Endocrinol Metab 101, 30023009.
67. Haeusler, RA, Astiarraga, B, Camastra, S et al. (2013) Human insulin resistance is associated with increased plasma levels of 12α-hydroxylated bile acids. Diabetes 62, 41844191.
68. Goncalves, D, Barataud, A, De Vadder, F et al. (2015) Bile routing modification reproduces key features of gastric bypass in rat. Ann Surg 262, 10061015.
69. Flynn, CR, Albaugh, VL, Cai, S et al. (2015) Bile diversion to the distal small intestine has comparable metabolic benefits to bariatric surgery. Nat Commun 6, 7715.
70. Pierre, JF, Martinez, KB, Ye, H et al. (2016) Activation of bile acid signaling improves metabolic phenotypes in high-fat diet-induced obese mice. Am J Physiol Gastrointest Liver Physiol 311, G286G304.
71. Kohli, R, Kirby, M, Setchell, KDR et al. (2010) Intestinal adaptation after ileal interposition surgery increases bile acid recycling and protects against obesity-related comorbidities. Am J Physiol Gastrointest Liver Physiol 299, G652G660.
72. Wu, T, Bound, MJ, Standfield, SD et al. (2013) Effects of rectal administration of taurocholic acid on glucagon-like peptide-1 and peptide YY secretion in healthy humans. Diab Obes Metab 15, 474477.
73. Adrian, TE, Gariballa, S, Parekh, KA et al. (2012) Rectal taurocholate increases L cell and insulin secretion, and decreases blood glucose and food intake in obese type 2 diabetic volunteers. Diabetologia 55, 23432347.
74. Bianco, AC, Maia, AL, da Silva, WS et al. (2005) Adaptive activation of thyroid hormone and energy expenditure. Biosci Rep 25, 191208.
75. Vassileva, G, Hu, W, Hoos, L et al. (2010) Gender-dependent effect of Gpbar1 genetic deletion on the metabolic profiles of diet-induced obese mice. J Endocrinol 205, 225232.
76. Zhang, Y, Lee, FY, Barrera, G et al. (2006) Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci USA 103, 10061111.
77. Cariou, B, van Harmelen, K, Duran-Sandoval, D et al. (2006) The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem 281, 1103911049.
78. Ma, Y, Huang, Y, Yan, L et al. (2013) Synthetic FXR agonist GW4064 prevents diet-induced hepatic steatosis and insulin resistance. Pharm Res 30, 14471457.
79. Caron, S, Huaman Samanez, C, Dehondt, H et al. (2013) Farnesoid X receptor inhibits the transcriptional activity of carbohydrate response element binding protein in human hepatocytes. Mol Cell Biol 33, 22022211.
80. Watanabe, M, Horai, Y, Houten, SM et al. (2011) Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure. J Biol Chem 286, 2691326920.
81. Fang, S, Suh, JM, Reilly, SM et al. (2015) Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med 21, 159165.
82. Schonewille, M, de Boer, JF & Groen, AK (2016) Bile salts in control of lipid metabolism. Curr Opin Lipidol 27, 295301.
83. van Dijk, TH, Grefhorst, A, Oosterveer, MH et al. (2009) An increased flux through the glucose 6-phosphate pool in enterocytes delays glucose absorption in Fxr−/− mice. J Biol Chem 284, 1031510323.
84. Prawitt, J, Abdelkarim, M, Stroeve, JHM et al. (2011) Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes 60, 18611871.
85. Bjursell, M, Wedin, M, Admyre, T et al. (2013) Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH. PLoS ONE 8, e64721.
86. Ryan, KK, Tremaroli, V, Clemmensen, C et al. (2014) FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 509, 183188.
87. Parséus, A, Sommer, N, Sommer, F et al. (2016) Microbiota-induced obesity requires farnesoid X receptor. Gut [Epublication ahead of print version].
88. Jiang, C, Xie, C, Lv, Y et al. (2015) Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat Commun 6, 10166.
89. Li, F, Jiang, C, Krausz, KW et al. (2013) Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun 4, 2384.
90. Herrema, H, Meissner, M, van Dijk, TH et al. (2010) Bile salt sequestration induces hepatic de novo lipogenesis through farnesoid X receptor- and liver X receptor alpha-controlled metabolic pathways in mice. Hepatology 51, 806816.
91. Garg, A & Grundy, SM (1994) Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. A short-term, double-blind, crossover trial. Ann Intern Med 121, 416422.
92. Staels, B & Kuipers, F (2007) Bile acid sequestrants and the treatment of type 2 diabetes mellitus. Drugs 67, 13831392.
93. Prawitt, J, Caron, S & Staels, B (2014) Glucose-lowering effects of intestinal bile acid sequestration through enhancement of splanchnic glucose utilization. Trends Endocrinol Metab 25, 235244.
94. Beysen, C, Murphy, EJ, Deines, K et al. (2012) Effect of bile acid sequestrants on glucose metabolism, hepatic de novo lipogenesis, and cholesterol and bile acid kinetics in type 2 diabetes: a randomised controlled study. Diabetologia 55, 432442.
95. Shang, Q, Saumoy, M, Holst, JJ et al. (2010) Colesevelam improves insulin resistance in a diet-induced obesity (F-DIO) rat model by increasing the release of GLP-1. Am J Physiol Gastrointest Liver Physiol 298, G419G424.
96. Chen, L, McNulty, J, Anderson, D et al. (2010) Cholestyramine reverses hyperglycemia and enhances glucose-stimulated glucagon-like peptide 1 release in Zucker diabetic fatty rats. J Pharmacol Exp Ther 334, 164170.
97. Bäckhed, F, Manchester, JK, Semenkovich, CF et al. (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 104, 979984.
98. Wichmann, A, Allahyar, A, Greiner, TU et al. (2013) Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe 14, 582590.


Intestinal bile acid receptors are key regulators of glucose homeostasis

  • Mohamed-Sami Trabelsi (a1), Sophie Lestavel (a2), Bart Staels (a2) and Xavier Collet (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed