Skip to main content Accessibility help
×
Home
Hostname: page-component-6c8bd87754-sbrr8 Total loading time: 0.873 Render date: 2022-01-19T20:01:19.905Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

The transport of vitamin C and effects of disease

Published online by Cambridge University Press:  28 February 2007

C. J. Schorah
Affiliation:
Department of Chemical Pathology and Immunology, University of Leeds, Leeds LS2 9JT
Rights & Permissions[Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Micronutrient transport processes’
Copyright
Copyright © The Nutrition Society 1992

References

Anderson, R., Theron, A. J. & Ras, G. J. (1988). Ascorbic acid neutralizes reactive oxidants released by hyperactive phagocytes from cigarette smokers. Lung 166, 149–59.CrossRefGoogle ScholarPubMed
Banerjee, A. (1982). Blood dehydroascorbic acid and diabetes mellitus in human beings. Annals of Clinical Biochemistry 19, 6570.CrossRefGoogle ScholarPubMed
Basu, J., Mikhail, M. S., Payraudeau, P. H., Palan, P. R. & Romney, S. L. (1990). Smoking and the antioxidant ascorbic acid: plasma, leukocyte and cervicovaginal cell concentrations in normal healthy women. American Journal of Obstetrics and Gynecology 163, 19481952.CrossRefGoogle ScholarPubMed
Basu, T. K. & Schorah, C. J. (1982). Vitamin C in Health and Disease. London: Croom Helm Ltd.Google ScholarPubMed
Bergsten, P., Amitai, G., Kehrl, J., Dhariwal, K. R., Klein, H. G. & Levine, M. (1990). Millimolar concentrations of ascorbic acid in purified human mononuclear leukocytes.Depletion and reaccumulation. Journal of Biological Chemistry 265,25842587.Google ScholarPubMed
Bigley, R., Wirth, M., Layman, D., Riddle, M. & Stankova, L. (1983). Interaction between glucose and dehydroascorbate transport in human neutrophils and fibroblasts. Diabetes 32,545548.CrossRefGoogle ScholarPubMed
Bode, A. M., Cunningham, L. & Rose, R. C. (1990). Spontaneous decay of oxidised ascorbic acid (dehydro-I,-ascorbic acid) evaluated by high-pressure liquid chromatography. Clinical Chemistry 36, 18071809.Google Scholar
Bowers-Komro, D. M. & McCormick, D. B. (1991). Characterisation of ascorbic acid uptake by isolated rat kidney cells. Journal of Nutrition 121, 5764.Google Scholar
Bron, A. J. & Brown, N. A. P. (1987). Perinuclear lens retrodots - a role for ascorbate in cataractogenesis. British Journal of Ophthalmology 71, 8695.CrossRefGoogle ScholarPubMed
Bryszawska, M. & Kostrzewa, E. (1987). Ascorbic acid content in plasma and erythrocytes of insulin dependent diabetic patients. Medical Science Research 15, 12771278.Google Scholar
Chattejee, I. B. & Banerjee, A. (1979). Estimation of dehydroascorbic acid in the blood of diabetic patients. Analytical Biochemistry 98, 368374.CrossRefGoogle Scholar
Chattejee, I. B., Majumder, A. K., Nandi, B. K. & Subramanian, N. (1975). Synthesis and some functions of vitamin C in animals. Annals of the New York Academy of Sciences 258, 2447.CrossRefGoogle Scholar
Chen, M. S., Hutchinson, M. L., Pecoraro, R. E., Lee, W. Y. L. & Labbe, R. F. (1983). Hyperglycaemia induced intracellular depletion of ascorbic acid in human mononuclear leukocytes. Diabetes 32, 10781081.CrossRefGoogle ScholarPubMed
Choi, J. L. & Rose, R. C. (1989). Transport and metabolism of ascorbic acid in human placenta. American Journal of Physiology 257, C110C113.Google ScholarPubMed
Chu, T. C. & Candia, O. A. (1988). Active transport of ascorbate across the isolated rabbit ciliary epithelium. Investigative Ophthalmology and Visual Science 29, 594599.Google ScholarPubMed
Cochrane, C. G., Spragg, R. G. & Revak, S. D. (1983). Pathogenesis of the adult respiratory distress syndrome. Evidence of oxidant activity in bronchoalveolar lavage fluid. Journal of Clinical Investigation 71, 754761.CrossRefGoogle ScholarPubMed
Cullen, E. I., May, V. & Eipper, B. A. (1986). Transport and stability of ascorbic acid in pituitary cultures. Molecular and Cellular Endocrinology 48, 239250.CrossRefGoogle ScholarPubMed
Cunningham, J. J., Ellis, S. L., McVeigh, K. L., Levine, R. E. & Calles-Escandon, J. (1991). Reduced mononuclear leukocyte ascorbic acid content in adults with insulin-dependent diabetes meilitus consuming adequate vitamin C. Metabolism: Clinical and Experimental 40, 146149.CrossRefGoogle Scholar
Davis, K. A., Lee, W. Y. L. & Labbe, R. F. (1983). Energy dependent transport of ascorbic acid into lymphocytes. Federation Proceedings 42, 2011.Google Scholar
Dhariwal, K. R., Washko, P., Hartzell, W. O. & Levine, M. (1989). Ascorbic acid within chromaffin granules. Journal of Biological Chemistry 264, 1540415409.Google ScholarPubMed
Diliberto, E. J., Heckman, G. D. & Daniels, A. J. (1983). Characterization of ascorbic acid transport by adrenomedullary chromaffin cells. Journal of Biological Chemistry 258, 1288612894.Google ScholarPubMed
Frei, B., England, L. & Ames, B. N. (1989). Ascorbate is an outstanding antioxidant in human blood plasma. Proceedings of the National Academy of Sciences 86,63776381.CrossRefGoogle ScholarPubMed
Garcia, R. & Municio, A. M. (1990). Effect of Escherichia coli endotoxin on ascorbic acid transport in isolated adrenocortical cells. Proceedings of the Society for Experimental Biology and Medicine 193, 280284.CrossRefGoogle ScholarPubMed
Helbig, H., Korbmacher, C. & Weiderholt, M. (1990). Mechanism of ascorbic acid transport in the aqueous humor. Fortschritte der Ophthalmologie 87,421424.Google ScholarPubMed
Helbig, H., Korbmacher, C., Wohlfarth, J., Berweck, S., Kuhner, D. & Wiederholt, M. (1989). Electrogenic Na+-ascorbate co-transport in cultured bovine pigmented ciliary epithelial cells. American Journal of Physiology 256, C44C49.Google Scholar
Kallner, A. B., Hartmann, D. & Hornig, D. H. (1981). On the requirements of ascorbic acid in man: steady state turnover and body pool in smokers. American Journal of Clinical Nutrition 34, 13471355.Google ScholarPubMed
Kapeghian, J. C. & Verlangieri, A. J. (1984). Effects of glucose on ascorbic acid uptake in heart endothelial cells. Possible pathogenesis of diabetic angiopathies. Life Sciences 34, 577584.CrossRefGoogle ScholarPubMed
Lovstad, R. A. (1987). Copper catalysed oxidation of ascorbate (vitamin C). Inhibitory effect of catalase, superoxide, serum proteins and amino acids. International Journal of Biochemistry 19, 309313.CrossRefGoogle Scholar
McLennan, S., Yue, D. K., Fisher, E., Capogreco, C., Heffernan, S., Ross, G. R. & Turtle, J. R. (1988). Deficiency of ascorbic acid in experimental diabetes. Relationship with collagen and polyol pathway abnormalities. Diabetes 37, 359361.CrossRefGoogle ScholarPubMed
Mann, G. V. & Newton, P. (1975). The membrane transport of ascorbic acid. Annals of the New York Academy of Sciences 258, 243252.CrossRefGoogle ScholarPubMed
Mefford, I. N., Oke, A. F. & Adams, R. N. (1981). Regional distribution of ascorbate in human brain. Brain Research 212, 223226.CrossRefGoogle ScholarPubMed
Meucci, E., Mortorana, G. E., Ursitti, A., Miggiano, G. A. D., Mordente, A. & Castelli, A. (1987). Vitamin C bovine serum albumin binding behaviour. Italian Journal of Biochemistry 36, 7581.Google ScholarPubMed
Molloy, T. P. & Wilson, C. W. M. (1980). Protein binding of ascorbic acid. 1. Binding to bovine serum albumin. International Journal for Vitamin and Nutrition Research 50, 380386.Google ScholarPubMed
Mooradian, A. D. (1987). Effect of ascorbate and dehydroascorbate on tissue uptake of glucose. Diabetes 36, 10011004.CrossRefGoogle ScholarPubMed
Moser, U. & Weber, F. (1984). Uptake of ascorbic acid by human granulocytes. International Journal for Vitamin and Nutrition Research 54, 4753.Google ScholarPubMed
Newill, A., Habibzadeh, N., Bishop, N. & Schorah, C. J. (1984). Plasma levels of vitamin C components in normal and diabetic subjects. Annals of Clinical Biochemistry 21, 488490.CrossRefGoogle ScholarPubMed
Padh, H. & Aleo, J. J. (1987). Characterisation of the ascorbic acid transport by 3T6 fibroblasts. Biochimica et Biophysica Acta 901, 283290.CrossRefGoogle Scholar
Paterson, C. A. & O'Rourke, M. C. (1987). Vitamin C levels in human tears. Archives of Ophthalmology 105, 376377.CrossRefGoogle ScholarPubMed
Patriarca, M., Menditto, A. & Morisi, G. (1991). Determination of ascorbic acid in blood plasma or serum or seminal plasma using a simplified sample preparation and high performance liquid chromatography coupled with UV detection. Journal of Liquid Chromatography 14, 297312.CrossRefGoogle Scholar
Pelletier, O. (1975). Vitamin C and cigarette smokers. Annals of the New York Academy of Sciences 258, 156168.Google ScholarPubMed
Penney, J. R. & Zilva, S. S. (1943). The chemical behaviour of dehydro-L-ascorbic acid in vitro and in vivo. Biochemical Journal 37, 403417.CrossRefGoogle ScholarPubMed
Raghoebar, M., Huisman, J. A. M., Van den Berg, W. B. & Van Ginneken, C. A. M. (1987). Characteristics of the transport of ascorbic acid into leucocytes. Life Sciences 40, 499510.CrossRefGoogle ScholarPubMed
Rose, R. C. (1987). Solubility properties of reduced and oxidised ascorbate as determinants of membrane permeation. Biochimica et Biophysica Acta 924, 254256.CrossRefGoogle Scholar
Rose, R. C. (1988). Transport of ascorbic acid and other water soluble vitamins. Biochimica et Biophysica Acta. 947, 335366.CrossRefGoogle ScholarPubMed
Rose, R. C. (1989). Renal metabolism of the oxidised form of ascorbic acid (dehydro-L-ascorbic acid). American Journal of Physiology 256, F52F56.Google Scholar
Rose, R. C. & Choi, J. L. (1990). Intestinal absorption and metabolism of ascorbic acid in rainbow trout. American Journal of Physiology 258, R1238R1241.Google ScholarPubMed
Rossi, F., Bellavite, P., Berton, G., Grzeskowiak, M. & Papini, E. (1985). Mechanism of production of toxic oxygen radicals by granulocytes and macrophages and their function in the inflammatory process. Pathology Research and Practice 180, 136142.CrossRefGoogle ScholarPubMed
Schectman, G., Byrd, J. C. & Gruchow, H. W. (1989). The influence of smoking on vitamin C status in adults. American hurnal of Public Health 79, 158162.CrossRefGoogle ScholarPubMed
Schorah, C. J., Bishop, N., Wales, J. K., Hansbro, P. M. & Habibzadeh, N. (1988). Blood vitamin C concentrations in patients with diabetes mellitus. Infernational Journal for Vitamin and Nutrition Research 58, 312318.Google ScholarPubMed
Schorah, C. J., Habibzadeh, N., Hancock, M. & King, R. F. G. J. (1986). Changes in plasma and buffy layer vitamin C concentrations following major surgery: what do they reflect? Annals of Clinical Biochemistry 23, 566570.CrossRefGoogle ScholarPubMed
Schorah, C. J., Sobala, G. M., Sanderson, M., Collis, N. & Primrose, J. N. (1991). Gastric juice ascorbic acid: effects of disease and implications for gastric carcinogenesis. American Journal of Clinical Nutrition 53, SUPPl., 287S293S.CrossRefGoogle ScholarPubMed
Sinclair, A. J., Girling, A. J., Gray, L., Le-Guen, C., Lunec, J. & Barnett, A. H. (1991). Disturbed handling of ascorbic acid in diabetic patients with and without microangiopathy during high dose ascorbate supplement. Diabetologia 34, 171175.CrossRefGoogle Scholar
Sobala, G. M., Pignatelli, B., Schorah, C. J., Bartsch, H., Sanderson, M., Dixon, M. F., Shires, S., King, R. F. G. & Axon, A. T. R. (1991). Levels of nitrite, nitrate, N-nitroso compounds, ascorbic acid and total bile acids in gastric juice of patients with and without precancerous conditions of the stomach. Carcinogenesis 12, 193198.CrossRefGoogle ScholarPubMed
Sobala, G. M., Schorah, C. J., Sanderson, M., Dixon, M. F., Tompkins, D. S., Godwin, P. & Axon, A. T. R. (1989). Ascorbic acid in the human stomach. Gastroenterology 97, 357363.CrossRefGoogle ScholarPubMed
Socci, R. R. & Delamere, N. A. (1988). Characteristics of ascorbate transport in rabbit iris ciliary body. Experimental Eye Research 46, 853861.CrossRefGoogle ScholarPubMed
Som, S., Basu, S., Mukherjee, D., Deb, S., Choudhury, P. R., Mukherjee, S., Chatterjee, S. N. & Chatterjee, I. B. (1981). Ascorbic acid in diabetes mellitus. Metabolism 30, 572577.CrossRefGoogle ScholarPubMed
Spector, R. (1977). Vitamin homeostasis in the central nervous system. New England Journal of Medicine 296, 13931398.Google ScholarPubMed
Stankova, L., Riddle, M., Larned, J., Burry, K., Menashe, D., Hart, J. & Bigley, R. (1984). Plasma ascorbate concentrations and blood dehydroascorbate transport in patients with diabetes mellitus. Metabolism 33, 347353.CrossRefGoogle ScholarPubMed
Stankova, L., Rigas, D. A. & Bigley, R. H. (1975). Dehydroascorbate uptake and reduction by human blood neutrophils, erythrocytes and lymphocytes. Annals of the New York Academy of Sciences 258, 238242.CrossRefGoogle ScholarPubMed
Washko, P., Rotrosen, D. & Levine, M. (1989). Ascorbic acid transport and accumulation in human neutrophils. Journal of Biological Chemistry 264, 1899619002.Google ScholarPubMed
Washko, P., Rotrosen, D. & Levine, M. (1990). Ascorbic acid accumulation in plated human neutrophils. FEBS Letters 260, 101104.CrossRefGoogle ScholarPubMed
Wilson, J. X. & Dixon, S. J. (1989 a). Ascorbic acid transport in mouse and rat astrocytes is reversibly inhibited by furosemide, SITS and DIDS. Neurochemical Research 14, 11691175.CrossRefGoogle ScholarPubMed
Wilson, J. X. & Dixon, S. J. (1989 b). High-affinity sodium-dependent uptake of ascorbic acid by rat osteoblasts. Journal of Membrane Biology 111, 83–81.CrossRefGoogle ScholarPubMed
Wilson, J. X., Jaworski, E. M., Kulaga, A. & Dixon, S. J. (1990). Substrate regulation of ascorbate transport activity in astrocytes. Neurochemical Research 15, 10371043.CrossRefGoogle ScholarPubMed
You have Access
29
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The transport of vitamin C and effects of disease
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The transport of vitamin C and effects of disease
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The transport of vitamin C and effects of disease
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *