Skip to main content Accessibility help
×
Home

Maternal folic acid supplementation and more prominent birth weight gain in twin birth compared with singleton birth: a cross-sectional study in northwest China

Published online by Cambridge University Press:  17 April 2020

Binyan Zhang
Affiliation:
Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, People’s Republic of China
Suhang Shang
Affiliation:
The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, People’s Republic of China
Shanshan Li
Affiliation:
Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, People’s Republic of China
Baibing Mi
Affiliation:
Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, People’s Republic of China
Minmin Li
Affiliation:
Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, People’s Republic of China
Guoshuai Shi
Affiliation:
Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, People’s Republic of China
Mao Ma
Affiliation:
The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, People’s Republic of China
Qian Wang
Affiliation:
The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, People’s Republic of China
Hong Yan
Affiliation:
Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, People’s Republic of China Nutrition and Food Safety Engineering Research Center of Shaanxi Province, Xi’an, Shaanxi 710061, People’s Republic of China
Shaonong Dang
Affiliation:
Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061, People’s Republic of China
Corresponding

Abstract

Objective:

To investigate the association of folic acid (FA) supplementation with birth weight, the risk of small for gestational age (SGA) and low birth weight (LBW) in singleton and twin pregnancy.

Design:

A population-based cross-sectional survey.

Setting:

Twenty counties and ten districts in Shaanxi Province of northwestern China, 2013.

Participants:

28 174 pregnant women with their infants, covering 27 818 single live births and 356 twin live births.

Results:

The prevalence of FA supplementation in singletons and twins was 63·9 and 66·3 %. The mean birth weight was 3267 (sd 459·1) g, 2525 (sd 534·0) g and 2494 (sd 539·5) g; the prevalence of SGA was 14·3, 51·4 and 53·4 %; the prevalence of LBW was 3·4, 42·4 and 46·6 % among singleton, twin A and twin B, respectively. Compared with non-users, women with FA supplementation were (β 17·3, 95 % CI 6·1, 28·4; β 166·3, 95 % CI 69·1, 263·5) associated with increased birth weight, lower risk of SGA (OR 0·85, 95 % CI 0·80, 0·92; OR 0·45, 95 % CI 0·30, 0·68) and LBW (OR 0·82, 95 % CI 0·71, 0·95; OR 0·50, 95 % CI 0·33, 0·75) in singletons and twins, and more prominent effects in twins. Moreover, there were significant interactions between FA supplementation and plurality on birth weight, SGA and LBW.

Conclusions:

The present study suggests the association of periconceptional 0·4 mg/d FA supplementation with increased birth weight and reduced risk of SGA and LBW in both singletons and twins, and this association may be more prominent in twins.

Type
Research paper
Copyright
© The Authors 2020

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

S. Dang and H. Yan contributed equally to this work.

References

Horikoshi, M, Beaumont, RN, Day, FR et al. (2016) Genome-wide associations for birth weight and correlations with adult disease. Nature 538, 248252.10.1038/nature19806CrossRefGoogle ScholarPubMed
Victora, CG, Adair, L, Fall, C et al. (2008) Maternal and child undernutrition: consequences for adult health and human capital. Lancet 371, 340357.10.1016/S0140-6736(07)61692-4CrossRefGoogle ScholarPubMed
Whincup, PH, Kaye, SJ, Owen, CG et al. (2008) Birth weight and risk of type 2 diabetes: a systematic review. JAMA 300, 28862897.Google ScholarPubMed
Katz, J, Lee, AC, Kozuki, N et al. (2013) Mortality risk in preterm and small-for-gestational-age infants in low-income and middle-income countries: a pooled country analysis. Lancet 382, 417425.10.1016/S0140-6736(13)60993-9CrossRefGoogle ScholarPubMed
Iliodromiti, S, Mackay, DF, Smith, GC et al. (2017) Customised and noncustomised birth weight centiles and prediction of stillbirth and infant mortality and morbidity: a cohort study of 979,912 term singleton pregnancies in Scotland. PLoS Med 14, e1002228.10.1371/journal.pmed.1002228CrossRefGoogle ScholarPubMed
McIntire, DD, Bloom, SL, Casey, BM et al. (1999) Birth weight in relation to morbidity and mortality among newborn infants. N Engl J Med 340, 12341238.10.1056/NEJM199904223401603CrossRefGoogle ScholarPubMed
Zeng, LX, Cheng, Y, Dang, SN et al. (2008) Impact of micronutrient supplementation during pregnancy on birth weight, duration of gestation, and perinatal mortality in rural western China: double blind cluster randomised controlled trial. Br Med J 337, 111.10.1136/bmj.a2001CrossRefGoogle ScholarPubMed
Liu, JM, Mei, Z, Ye, R et al. (2013) Micronutrient supplementation and pregnancy outcomes: double-blind randomized controlled trial in China. JAMA Intern Med 173, 276282.10.1001/jamainternmed.2013.1632CrossRefGoogle ScholarPubMed
West, KP Jr, Shamim, AA, Mehra, S et al. (2014) Effect of maternal multiple micronutrient vs iron-folic acid supplementation on infant mortality and adverse birth outcomes in rural Bangladesh: the JiVitA-3 randomized trial. JAMA 312, 26492658.10.1001/jama.2014.16819CrossRefGoogle ScholarPubMed
De Wals, P, Tairou, F, Van Allen, MI et al. (2007) Reduction in neural-tube defects after folic acid fortification in Canada. N Engl J Med 357, 135142.10.1056/NEJMoa067103CrossRefGoogle ScholarPubMed
Thaler, CJ (2014) Folate metabolism and human reproduction. Geburtsh Frauenheilk (Obstetrics gynecology) 74, 845851.Google ScholarPubMed
Tamura, T & Picciano, MF (2006) Folate and human reproduction. Am J Clin Nutr 83, 9931016.10.1093/ajcn/83.5.993CrossRefGoogle ScholarPubMed
Maternal and Child Health Division (2010) Project management plan on folic acid supplementation prevented neural tube defects. Notification of the Ministry of Health. http://www.gov.cn/zwgk/2010-06/28/content_1639533.htm (accessed June 2010).Google Scholar
Berry, RJ, Li, Z, Erickson, JD et al. (1999) Prevention of neural-tube defects with folic acid in China. N Engl J Med 341, 14851490.10.1056/NEJM199911113412001CrossRefGoogle ScholarPubMed
Czeizel, AE & Dudas, I. (1992) Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 327, 18321835.10.1056/NEJM199212243272602CrossRefGoogle ScholarPubMed
Shaw, GM, Lammer, EJ, Wasserman, CR et al. (1995) Risks of orofacial clefts in children born to women using multivitamins containing folic acid periconceptionally. Lancet 346, 393396.10.1016/S0140-6736(95)92778-6CrossRefGoogle ScholarPubMed
Liu, S, Joseph, KS, Luo, W et al. (2016) Effect of folic acid food fortification in Canada on congenital heart disease subtypes. Circulation 134, 647655.10.1161/CIRCULATIONAHA.116.022126CrossRefGoogle Scholar
Van Dijk, AE, Van Eijsden, M, Stronks, K et al. (2010) Maternal depressive symptoms, serum folate status, and pregnancy outcome: results of the Amsterdam Born Children and their Development study. Am J Obstet Gynecol 203, e561e567.10.1016/j.ajog.2010.07.017CrossRefGoogle ScholarPubMed
Timmermans, S, Jaddoe, VWV, Hofman, A et al. (2009) Periconception folic acid supplementation, fetal growth and the risks of low birth weight and preterm birth: the Generation R Study. Br J Nutr 102, 777785.10.1017/S0007114509288994CrossRefGoogle ScholarPubMed
Zheng, JS, Guan, YH, Zhao, YM et al. (2016) Pre-conceptional intake of folic acid supplements is inversely associated with risk of preterm birth and small-for-gestational-age birth: a prospective cohort study. Br J Nutr 115, 509516.10.1017/S0007114515004663CrossRefGoogle ScholarPubMed
Hodgetts, VA, Morris, RK, Francis, A et al. (2015) Effectiveness of folic acid supplementation in pregnancy on reducing the risk of small-for-gestational age neonates: a population study, systematic review and meta-analysis. BJOG 122, 478490.10.1111/1471-0528.13202CrossRefGoogle ScholarPubMed
Li, N, Li, ZW, Ye, RW et al. (2017) Impact of periconceptional folic acid supplementation on low birth weight and small-for-gestational-age infants in China: a large prospective cohort study. J Pediatr 187, 105110.10.1016/j.jpeds.2017.04.060CrossRefGoogle ScholarPubMed
Pastor-Valero, M, Navarrete-Munoz, EM, Rebagliato, M et al. (2011) Periconceptional folic acid supplementation and anthropometric measures at birth in a cohort of pregnant women in Valencia, Spain. Br J Nutr 105, 13521360.10.1017/S0007114510005143CrossRefGoogle Scholar
Papadopoulou, E, Stratakis, N, Roumeliotaki, T et al. (2013) The effect of high doses of folic acid and iron supplementation in early-to-mid pregnancy on prematurity and fetal growth retardation: the mother-child cohort study in Crete, Greece (Rhea study). Eur J Nutr 52, 327336.10.1007/s00394-012-0339-zCrossRefGoogle ScholarPubMed
Yang, JM, Cheng, Y, Pei, LL et al. (2017) Maternal iron intake during pregnancy and birth outcomes: a cross-sectional study in Northwest China. Br J Nutr 117, 862871.10.1017/S0007114517000691CrossRefGoogle ScholarPubMed
Yang, J, Dang, S, Cheng, Y et al. (2017) Dietary intakes and dietary patterns among pregnant women in Northwest China. Public Health Nutr 20, 282293.10.1017/S1368980016002159CrossRefGoogle ScholarPubMed
Li, Z, Ye, R, Zhang, L, et al. (2014) Periconceptional folic acid supplementation and the risk of preterm births in China: a large prospective cohort study. Int J Epidemiol 43, 11321139.10.1093/ije/dyu020CrossRefGoogle ScholarPubMed
Conde-Agudelo, A, Belizan, JM, Norton, MH et al. (2005) Effect of the interpregnancy interval on perinatal outcomes in Latin America. Obstet Gynecol 106, 359366.10.1097/01.AOG.0000171118.79529.a3CrossRefGoogle ScholarPubMed
Zhu, L, Zhang, R, Zhang, S et al. (2015) Chinese neonatal birth weight curve for different gestational age. Chin J Pediatr 2, 97103.Google Scholar
Schieve, LA, Meikle, SF, Ferre, C et al. (2002) Low and very low birth weight in infants conceived with use of assisted reproductive technology. N Engl J Med 346, 731737.10.1056/NEJMoa010806CrossRefGoogle ScholarPubMed
Filmer, D & Pritchett, LH (2001) Estimating wealth effects without expenditure data – or tears: an application to educational enrollments in states of India. Demography 38, 115132.Google ScholarPubMed
Larsen, S, Haavaldsen, C, Bjelland, EK et al. (2018) Placental weight and birthweight: the relations with number of daily cigarettes and smoking cessation in pregnancy. A population study. Int J Epidemiol 47, 11411150.10.1093/ije/dyy110CrossRefGoogle ScholarPubMed
Liu, S, Zhang, M, Yang, L et al. (2017) Prevalence and patterns of tobacco smoking among Chinese adult men and women: findings of the 2010 national smoking survey. J Epidemiol Community Health 71, 154161.10.1136/jech-2016-207805CrossRefGoogle ScholarPubMed
Pollack, H, Lantz, PM & Frohna, JG (2000) Maternal smoking and adverse birth outcomes among singletons and twins. Am J Public Health 90, 395400.Google ScholarPubMed
Kibel, M, Kahn, M, Sherman, C et al. (2017) Placental abnormalities differ between small for gestational age fetuses in dichorionic twin and singleton pregnancies. Placenta 60, 2835.10.1016/j.placenta.2017.10.002CrossRefGoogle ScholarPubMed
Zeger, SL & Liang, KY (1986) Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42, 121130.10.2307/2531248CrossRefGoogle ScholarPubMed
Zeng, L, Yan, H, Cheng, Y et al. (2011) Modifying effects of wealth on the response to nutrient supplementation in pregnancy on birth weight, duration of gestation and perinatal mortality in rural western China: double-blind cluster randomized controlled trial. Int J Epidemiol 40, 350362.10.1093/ije/dyq262CrossRefGoogle ScholarPubMed
Sengpiel, V, Elind, E, Bacelis, J et al. (2013) Maternal caffeine intake during pregnancy is associated with birth weight but not with gestational length: results from a large prospective observational cohort study. BMC Med 11, 42.10.1186/1741-7015-11-42CrossRefGoogle Scholar
Banhidy, F, Acs, N, Puho, E et al. (2006) Pregnancy complications and delivery outcomes of pregnant women with common cold. Cent Eur J Public Health 14, 1014.10.21101/cejph.b0050CrossRefGoogle ScholarPubMed
Acharya, D, Singh, JK, Kadel, R et al. (2018) Maternal factors and utilization of the antenatal care services during pregnancy associated with low birth weight in rural Nepal: analyses of the antenatal care and birth weight records of the MATRI-SUMAN trial. Int J Environ Res Public Health 15, e2450.10.3390/ijerph15112450CrossRefGoogle ScholarPubMed
Monden, CWS & Smits, J (2017) Mortality among twins and singletons in sub-Saharan Africa between 1995 and 2014: a pooled analysis of data from 90 demographic and health surveys in 30 countries. Lancet Glob Health 5, e673e679.10.1016/S2214-109X(17)30197-3CrossRefGoogle ScholarPubMed
Hanson, C, Munjanja, S, Binagwaho, A etal (2019) National policies and care provision in pregnancy and childbirth for twins in Eastern and Southern Africa: a mixed-methods multi-country study. PLoS Med 16, e1002749.10.1371/journal.pmed.1002749CrossRefGoogle ScholarPubMed
Kang, YJ, Dang, SN, Zeng, LX et al. (2017) Multi-micronutrient supplementation during pregnancy for prevention of maternal anaemia and adverse birth outcomes in a high-altitude area: a prospective cohort study in rural Tibet of China. Br J Nutr 118, 431440.10.1017/S000711451700229XCrossRefGoogle Scholar
Shi, R (2013) Changing patterns of sex ratio at birth in China: a comparative analysis of data from the fifth and sixth censuses of China. Population Research 37, 6672.Google Scholar
Van der Molen, EF, Verbruggen, B, Novakova, I et al. (2000) Hyperhomocysteinemia and other thrombotic risk factors in women with placental vasculopathy. BJOG 107, 785791.10.1111/j.1471-0528.2000.tb13341.xCrossRefGoogle ScholarPubMed
Bailey, LB & Gregory, JF. (1999) Folate metabolism and requirements. J Nutr 129, 779782.10.1093/jn/129.4.779CrossRefGoogle ScholarPubMed
Sinclair, KD, Allegrucci, C, Singh, R et al. (2007) DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci U S A 104, 1935119356.10.1073/pnas.0707258104CrossRefGoogle ScholarPubMed
Muggli, EE & Halliday, JL (2007) Folic acid and risk of twinning: a systematic review of the recent literature, July 1994 to July 2006. Med J Aust 186, 243248.10.5694/j.1326-5377.2007.tb00882.xCrossRefGoogle ScholarPubMed
Li, Z, Gindler, J, Wang, H et al. (2003) Folic acid supplements during early pregnancy and likelihood of multiple births: a population-based cohort study. Lancet 361, 380384.10.1016/S0140-6736(03)12390-2CrossRefGoogle ScholarPubMed
Valera-Gran, D, de la Hera, M Garcia, Navarrete-Munoz, EM et al. (2014) Folic acid supplements during pregnancy and child psychomotor development after the first year of life. JAMA Pediatr 168, e142611.10.1001/jamapediatrics.2014.2611CrossRefGoogle ScholarPubMed

Zhang et al. Supplementary Materials

Zhang et al. Supplementary Materials

File 29 KB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 6
Total number of PDF views: 64 *
View data table for this chart

* Views captured on Cambridge Core between 17th April 2020 - 26th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-t4g97 Total loading time: 0.33 Render date: 2021-01-26T00:04:33.229Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Maternal folic acid supplementation and more prominent birth weight gain in twin birth compared with singleton birth: a cross-sectional study in northwest China
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Maternal folic acid supplementation and more prominent birth weight gain in twin birth compared with singleton birth: a cross-sectional study in northwest China
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Maternal folic acid supplementation and more prominent birth weight gain in twin birth compared with singleton birth: a cross-sectional study in northwest China
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *