Skip to main content Accessibility help
×
Home

Macronutrient intake and type 2 diabetes risk in middle-aged Australian women. Results from the Australian Longitudinal Study on Women's Health

  • Amani Alhazmi (a1) (a2), Elizabeth Stojanovski (a3), Mark McEvoy (a4) and Manohar L Garg (a5)

Abstract

Objective

To investigate the association between macronutrient intake and type 2 diabetes risk in middle-aged Australian women.

Design

A prospective cohort study, with 6 years (2002–2007) of follow up. Dietary intake was assessed with a validated FFQ. Relative risks with 95 % confidence intervals were used to examine risk associations.

Setting

Australian Longitudinal Study on Women's Health, Australia.

Subjects

Australian women (n 8370) from the Australian Longitudinal Study on Women's Health aged 45–50 years and free of type 2 diabetes at baseline.

Results

After 6 years of follow-up, 311 women developed type 2 diabetes. After adjusting for sociodemographic, lifestyle and other dietary risk factors, MUFA, total n-3 PUFA, α-linolenic acid and total n-6 PUFA intakes were positively associated with the incidence of type 2 diabetes. The relative risks for type 2 diabetes for the highest compared with the lowest quintiles were 1·64 (95 % CI 1·06, 2·54), P = 0·04 for MUFA; 1·55 (95 % CI 1·03, 2·32), P = 0·01 for n-3 PUFA; 1·84 (95 % CI 1·25, 2·71), P < 0·01 for α-linolenic acid; and 1·60 (95 % CI 1·03, 2·48), P = 0·04 for n-6 PUFA. Other dietary macronutrients were not significantly associated with diabetes risk.

Conclusions

The data indicate that consumption of MUFA, n-3 PUFA and n-6 PUFA may influence the risk of developing type 2 diabetes in women.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Macronutrient intake and type 2 diabetes risk in middle-aged Australian women. Results from the Australian Longitudinal Study on Women's Health
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Macronutrient intake and type 2 diabetes risk in middle-aged Australian women. Results from the Australian Longitudinal Study on Women's Health
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Macronutrient intake and type 2 diabetes risk in middle-aged Australian women. Results from the Australian Longitudinal Study on Women's Health
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email Manohar.garg@newcastle.edu.au

References

Hide All
1. Shaw, JE, Sicree, RA & Zimmet, PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87, 414.
2. van Dieren, S, Beulens, JW, van der Schouw, YT et al. (2010) The global burden of diabetes and its complications: an emerging pandemic. Eur J Cardiovasc Prev Rehabil 17, Suppl. 1, S3S8.
3. Bazzano, LA, Serdula, M & Liu, S (2005) Prevention of type 2 diabetes by diet and lifestyle modification. J Am Coll Nutr 24, 310319.
4. Meyer, KA, Kushi, LH, Jacobs, DR Jr et al. (2000) Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am J Clin Nutr 71, 921930.
5. Villegas, R, Liu, S, Gao, YT et al. (2007) Prospective study of dietary carbohydrates, glycemic index, glycemic load, and incidence of type 2 diabetes mellitus in middle-aged Chinese women. Arch Intern Med 167, 23102316.
6. Sluijs, I, Beulens, JW, van der A, DL et al. (2010) Dietary intake of total, animal, and vegetable protein and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-NL study. Diabetes Care 33, 4348.
7. Colditz, GA, Manson, JE, Stampfer, MJ et al. (1992) Diet and risk of clinical diabetes in women. Am J Clin Nutr 55, 10181023.
8. Wang, ET, de Koning, L & Kanaya, AM (2010) Higher protein intake is associated with diabetes risk in South Asian Indians: the metabolic syndrome and atherosclerosis in South Asians living in America (MASALA) study. J Am Coll Nutr 29, 130135.
9. Riserus, U, Willett, WC & Hu, FB (2009) Dietary fats and prevention of type 2 diabetes. Prog Lipid Res 48, 4451.
10. Meyer, KA, Kushi, LH, Jacobs, DR Jr et al. (2001) Dietary fat and incidence of type 2 diabetes in older Iowa women. Diabetes Care 24, 15281535.
11. Salmeron, J, Hu, FB, Manson, JE et al. (2001) Dietary fat intake and risk of type 2 diabetes in women. Am J Clin Nutr 73, 10191026.
12. Lee, C, Dobson, AJ, Brown, WJ et al. (2005) Cohort profile: the Australian longitudinal study on women's health. Int J Epidemiol 34, 987991.
13. Ireland P Jolley, D, Giles, G et al. (1994) Development of the Melbourne FFQ: a food frequency questionnaire for use in an Australian prospective study involving an ethnically diverse cohort. Asia Pac J Clin Nutr 3, 1931.
14. National Food Authority (1995) NUTTAB95 Nutrient Data Table for Use in Australia. Canberra: National Food Authority.
15. Hodge, A, Patterson, AJ, Brown, WJ et al. (2000) The Anti Cancer Council of Victoria FFQ: relative validity of nutrient intakes compared with weighed food records in young to middle-aged women in a study of iron supplementation. Aust N Z J Public Health 24, 576583.
16. Lowe, J, Byles, J, Dolja-Gore, X et al. (2010) Does systematically organized care improve outcomes for women with diabetes? J Eval Clin Pract 16, 887894.
17. Australian Institute of Health and Welfare (2004) Rural, Regional and Remote Health: A Guide to Remoteness Classifications. Canberra: AIHW.
18. Armstrong, T, Bauman, A & Davis, J (2000) Physical Activity Patterns of Australian Adults. Canberra: AIHW.
19. World Health Organization (2000) Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation. WHO Technical Report Series no. 894. Geneva: WHO.
20. National Health and Medical Research Council (2001) Australian Alcohol Guidelines: Health Risks and Benefits. Canberra: Commonwealth of Australia.
21. Willett, W & Stampfer, MJ (1986) Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 124, 1727.
22. van Dam, RM, Willett, WC, Rimm, EB et al. (2002) Dietary fat and meat intake in relation to risk of type 2 diabetes in men. Diabetes Care 25, 417424.
23. Song, Y, Manson, JE, Buring, JE et al. (2004) A prospective study of red meat consumption and type 2 diabetes in middle-aged and elderly women: the women's health study. Diabetes Care 27, 21082115.
24. Hu, FB, van Dam, RM & Liu, S (2001) Diet and risk of type II diabetes: the role of types of fat and carbohydrate. Diabetologia 44, 805817.
25. Hodge, AM, English, DR, O'Dea, K et al. (2007) Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: interpreting the role of linoleic acid. Am J Clin Nutr 86, 189197.
26. Feskens, EJ, Virtanen, SM, Rasanen, L et al. (1995) Dietary factors determining diabetes and impaired glucose tolerance. A 20-year follow-up of the Finnish and Dutch cohorts of the Seven Countries Study. Diabetes Care 18, 11041112.
27. Marshall, JA, Hoag, S, Shetterly, S et al. (1994) Dietary fat predicts conversion from impaired glucose tolerance to NIDDM. The San Luis Valley Diabetes Study. Diabetes Care 17, 5056.
28. Mayer, EJ, Newman, B, Quesenberry, CP Jr et al. (1993) Usual dietary fat intake and insulin concentrations in healthy women twins. Diabetes Care 16, 14591469.
29. Mostad, IL, Bjerve, KS, Bjorgaas, MR et al. (2006) Effects of n-3 fatty acids in subjects with type 2 diabetes: reduction of insulin sensitivity and time-dependent alteration from carbohydrate to fat oxidation. Am J Clin Nutr 84, 540550.
30. Mayer-Davis, EJ, Monaco, JH, Hoen, HM et al. (1997) Dietary fat and insulin sensitivity in a triethnic population: the role of obesity. The Insulin Resistance Atherosclerosis Study (IRAS). Am J Clin Nutr 65, 7987.
31. Djousse, L, Hunt, SC, Tang, W et al. (2006) Dietary linolenic acid and fasting glucose and insulin: the National Heart, Lung, and Blood Institute Family Heart Study. Obesity (Silver Spring) 14, 295300.
32. Toft, I, Bonaa, KH, Ingebretsen, OC et al. (1995) Effects of n-3 polyunsaturated fatty acids on glucose homeostasis and blood pressure in essential hypertension. Ann Intern Med 123, 911918.
33. Hartweg, J, Perera, R, Montori, V et al. (2008) Omega-3 polyunsaturated fatty acids (PUFA) for type 2 diabetes mellitus. Cochrane Database Syst Rev issue 1, CD003205.
34. Kröger, J, Zietemann, V, Enzenbach, C et al. (2011) Erythrocyte membrane phospholipid fatty acids, desaturase activity, and dietary fatty acids in relation to risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Am J Clin Nutr 93, 127142.
35. Barre, DE, Mizier-Barre, KA, Griscti, O et al. (2008) High dose flaxseed oil supplementation may affect fasting blood serum glucose management in human type 2 diabetics. J Oleo Sci 57, 269273.
36. Taylor, CG, Noto, AD, Stringer, DM et al. (2010) Dietary milled flaxseed and flaxseed oil improve n-3 fatty acid status and do not affect glycemic control in individuals with well-controlled type 2 diabetes. J Am Coll Nutr 29, 7280.
37. Brostow, DP, Odegaard, AO, Koh, W-P et al. (2011) Omega-3 fatty acids and incident type 2 diabetes: the Singapore Chinese Health Study. Am J Clin Nutr 94, 520526.
38. Djousse, L, Biggs, ML, Lemaitre, RN et al. (2011) Plasma omega-3 fatty acids and incident diabetes in older adults. Am J Clin Nutr 94, 527533.
39. Muramatsu, T, Yatsuya, H, Toyoshima, H et al. (2010) Higher dietary intake of α-linolenic acid is associated with lower insulin resistance in middle-aged Japanese. Prev Med 50, 272276.
40. Toborek, M, Lee, YW, Garrido, R et al. (2002) Unsaturated fatty acids selectively induce an inflammatory environment in human endothelial cells. Am J Clin Nutr 75, 119125.
41. Williams, M & Nadler, J (2007) Inflammatory mechanisms of diabetic complications. Curr Diabetes Rep 7, 242248.
42. Morise, A, Serougne, C, Gripois, D et al. (2004) Effects of dietary α linolenic acid on cholesterol metabolism in male and female hamsters of the LPN strain. J Nutr Biochem 15, 5161.
43. Simopoulos, AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood) 233, 674688.
44. Mooy, JM, Grootenhuis, PA, de Vries, H et al. (1995) Prevalence and determinants of glucose intolerance in a Dutch Caucasian population. The Hoorn Study. Diabetes Care 18, 12701273.
45. Vessby, B, Aro, A, Skarfors, E et al. (1994) The risk to develop NIDDM is related to the fatty acid composition of the serum cholesterol esters. Diabetes 43, 13531357.
46. Krachler, B, Norberg, M, Eriksson, JW et al. (2008) Fatty acid profile of the erythrocyte membrane preceding development of type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis 18, 503510.
47. Iggman, D, Arnlov, J, Vessby, B et al. (2010) Adipose tissue fatty acids and insulin sensitivity in elderly men. Diabetologia 53, 850857.
48. Schulze, MB, Schulz, M, Heidemann, C et al. (2008) Carbohydrate intake and incidence of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)–Potsdam Study. Br J Nutr 99, 11071116.
49. Alhazmi, A, Stojanovski, E, McEvoy, M et al. (2012) Macronutrient intakes and development of type 2 diabetes: a systematic review and meta-analysis of cohort studies. J Am Coll Nutr 31, 243258.
50. Akinkuolie, AO, Ngwa, JS, Meigs, JB et al. (2011) Omega-3 polyunsaturated fatty acid and insulin sensitivity: a meta-analysis of randomized controlled trials. Clin Nutr 30, 702707.
51. Montori, VM, Farmer, A, Wollan, PC et al. (2000) Fish oil supplementation in type 2 diabetes: a quantitative systematic review. Diabetes Care 23, 14071415.
52. Deckelbaum, RJ & Torrejon, C (2012) The omega-3 fatty acid nutritional landscape: health benefits and sources. J Nutr 142, issue 3, 587S591S.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed