Skip to main content Accessibility help
×
×
Home

Ultra-processed foods and the limits of product reformulation

  • Gyorgy Scrinis (a1) and Carlos Augusto Monteiro (a2)
Abstract

The nutritional reformulation of processed food and beverage products has been promoted as an important means of addressing the nutritional imbalances in contemporary dietary patterns. The focus of most reformulation policies is the reduction in quantities of nutrients-to-limit – Na, free sugars, SFA, trans-fatty acids and total energy. The present commentary examines the limitations of what we refer to as ‘nutrients-to-limit reformulation’ policies and practices, particularly when applied to ultra-processed foods and drink products. Beyond these nutrients-to-limit, there are a range of other potentially harmful processed and industrially produced ingredients used in the production of ultra-processed products that are not usually removed during reformulation. The sources of nutrients-to-limit in these products may be replaced with other highly processed ingredients and additives, rather than with whole or minimally processed foods. Reformulation policies may also legitimise current levels of consumption of ultra-processed products in high-income countries and increased levels of consumption in emerging markets in the global South.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Ultra-processed foods and the limits of product reformulation
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Ultra-processed foods and the limits of product reformulation
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Ultra-processed foods and the limits of product reformulation
      Available formats
      ×
Copyright
Corresponding author
* Corresponding author: Email gyorgys@unimelb.edu.au
References
Hide All
1. World Health Organization (2004) Global Strategy on Diet, Physical Activity and Health. Geneva: WHO.
2. Marotta, G, Simeone, M & Nazzaro, C (2014) Product reformulation in the food system to improve food safety. Evaluation of policy interventions. Appetite 74, 107115.
3. International Food and Beverage Alliance (2016) Commitment on Product Formulation and Innovation. Trelex: IFBA.
4. World Health Organization (2014) Policy Brief: Producing and Promoting More Food Products Consistent with a Health Diet. Geneva: WHO.
5. Unnevehr, L & Jagmanaite, E (2008) Getting rid of trans fats in the US diet: policies, incentives and progress. Food Policy 33, 497503.
6. Nestle, M (2013) Food Politics: How the Food Industry Influences Nutrition and Health, 10th ed. Berkeley, CA: University of California Press.
7. Webster, J, Trieu, K, Dunford, E et al. (2014) Target salt 2025: a global overview of national programs to encourage the food industry to reduce salt in foods. Nutrients 6, 32743287.
8. Lloyd-Williams, F, Bromley, H, Orton, L et al. (2014) Smorgasbord or symphony? Assessing public health nutrition policies across 30 European countries using a novel framework. BMC Public Health 14, 1195.
9. Sacks, G, Mialon, M, Vandevijvere, S et al. (2015) Comparison of food industry policies and commitments on marketing to children and product (re)formulation in Australia, New Zealand and Fiji. Crit Public Health 25, 299319.
10. Vlassopoulos, A, Masset, G, Charles, VR et al. (2016) A nutrient profiling system for the (re)formulation of a global food and beverage portfolio. Eur J Nutr 56, 11051122.
11. Panjwani, C & Caraher, M (2014) The Public Health Responsibility Deal: brokering a deal for public health, but on whose terms? Health Policy 114, 163173.
12. van Raaij, J, van Raaij, M, Hendriksen, H et al. (2009) Potential for improvement of population diet through reformulation of commonly eaten foods. Public Health Nutr 12, 325330.
13. Knai, C, Petticrew, M, Durand, M et al. (2015) Has a public–private partnership resulted in action on healthier diets in England? An analysis of the Public Health Responsibility Deal food pledges. Food Policy 54, 110.
14. Lacey, C, Clark, B, Frewer, L et al. (2016) ‘Reaching its limits’: industry perspectives on salt reduction. Br Food J 118, 16101624.
15. Mohamedshah, FY & Ruff, J (2014) Dietary guidance and the role of food science: developing healthy foods to help Americans achieve the Dietary Recommendations. Nutr Today 49, 284290.
16. Reeve, B & Magnusson, R (2015) Food reformulation and the (neo)-liberal state: new strategies for strengthening voluntary salt reduction programs in the UK and USA. Public Health 129, 10611073.
17. Monteiro, CA, Cannon, G, Moubarac, J-C et al. (2017) The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr (Epublication ahead of print version).
18. Kanzler, S, Hartmann, C, Gruber, A et al. (2014) Salt as a public health challenge in continental European convenience and ready meals. Public Health Nutr 17, 24592466.
19. Santos, J, Trieu, K, Raj, T et al. (2017) The science of salt: a regularly updated systematic review of the implementation of salt reduction interventions (March–August 2016). J Clin Hypertens 19, 439451.
20. Willett, W (2014) The case for banning trans fats. The FDA’s new policy on these deadly artificial fatty acids is long overdue. Sci Am 310, 13.
21. Imamura, F, O’Connor, L, Ye, Z et al. (2015) Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. BMJ 351, h3576.
22. Popkin, B & Hawkes, C (2016) Sweetening of the global diet, particularly beverages: patterns, trends, and policy responses. Lancet Diabetes Endocrinol 4, 174186.
23. Mozaffarian, D (2016) Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation 133, 187225.
24. Siri-Tarino, PW & Krauss, RM (2016) Which cheese to choose? Am J Clin Nutr 104, 953954.
25. Raziani, F, Tholstrup, T, Kristensen, MD et al. (2016) High intake of regular-fat cheese compared with reduced-fat cheese does not affect LDL cholesterol or risk markers of the metabolic syndrome: a randomized controlled trial. Am J Clin Nutr 104, 973981.
26. Scrinis, G (2016) Reformulation, fortification and functionalization: Big Food corporations’ nutritional engineering and marketing strategies. J Peasant Stud 43, 1737.
27. Scrinis, G (2013) Nutritionism: The Science and Politics of Dietary Advice. New York: Columbia University Press.
28. Moubarac, J-C, Parra, DC, Cannon, G et al. (2014) Food classification systems based on food processing: significance and implications for policies and actions: a systematic literature review and assessment. Curr Obes Rep 3, 256272.
29. Fardet, A, Rock, E, Bassama, J et al. (2015) Current food classifications in epidemiological studies do not enable solid nutritional recommendations for preventing diet-related chronic diseases: the impact of food processing. Adv Nutr 6, 629638.
30. Poti, JM, Mendez, MA, Ng, SW et al. (2015) Is the degree of food processing and convenience linked with the nutritional quality of foods purchased by US households? Am J Clin Nutr 101, 12511262.
31. Monteiro, CA, Moubarac, JC, Cannon, G et al. (2013) Ultra‐processed products are becoming dominant in the global food system. Obes Rev 14, 2128.
32. Monteiro, CA, Cannon, G, Levy, RB et al. (2016) NOVA. The star shines bright. World Nutr 7, 2838.
33. Canella, DS, Levy, RB, Martins, APB et al. (2014) Ultra-processed food products and obesity in Brazilian households (2008–2009). PLoS One 9, e92752.
34. da Costa Louzada, ML, Baraldi, LG, Steele, EM et al. (2015) Consumption of ultra-processed foods and obesity in Brazilian adolescents and adults. Prev Med 81, 915.
35. Juul, F & Hemmingsson, E (2015) Trends in consumption of ultra-processed foods and obesity in Sweden between 1960 and 2010. Public Health Nutr 18, 30963107.
36. de Deus Mendonça, R, Pimenta, AM, Gea, A et al. (2016) Ultraprocessed food consumption and risk of overweight and obesity: the University of Navarra Follow-Up (SUN) cohort study. Am J Clin Nutr 104, 14331440.
37. de Deus Mendonça, R, Lopes, ACS, Pimenta, AM et al. (2016) Ultra-processed food consumption and the incidence of hypertension in a Mediterranean cohort: the Seguimiento Universidad de Navarra Project. Am J Hypertens 30, 358366.
38. Tavares, LF, Fonseca, SC, Rosa, MLG et al. (2012) Relationship between ultra-processed foods and metabolic syndrome in adolescents from a Brazilian Family Doctor Program. Public Health Nutr 15, 8287.
39. Rauber, F, Campagnolo, P, Hoffman, D et al. (2015) Consumption of ultra-processed food products and its effects on children’s lipid profiles: a longitudinal study. Nutr Metab Cardiovasc Dis 25, 116122.
40. Louzada, MLdC, Martins, APB, Canella, DS et al. (2015) Impact of ultra-processed foods on micronutrient content in the Brazilian diet. Rev Saude Publica 49, 45.
41. Fardet, A (2015) A shift toward a new holistic paradigm will help to preserve and better process grain products’ food structure for improving their health effects. Food Funct 6, 363382.
42. Chassaing, B, Koren, O, Goodrich, JK et al. (2015) Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 9296.
43. Kessler, D (2009) The End of Overeating: Taking Control of the Insatiable American Appetite. New York: Rodale.
44. Moss, M (2012) Salt, Sugar, Fat: How the Food Giants Hooked Us. New York: Random House.
45. Mozaffarian, D, Jacobson, MF & Greenstein, JS (2010) Food reformulations to reduce trans fatty acids. N Engl J Med 362, 20372039.
46. Savio, S, Mehta, K, Udell, T et al. (2013) A survey of the reformulation of Australian child-oriented food products. BMC Public Health 13, 836.
47. Mathias, KC, Ng, SW & Popkin, B (2015) Monitoring changes in the nutritional content of ready-to-eat grain-based dessert products manufactured and purchased between 2005 and 2012. J Acad Nutr Diet 115, 360368.
48. Pombo-Rodrigues, S, Hashem, KM, He, FJ et al. (2017) Salt and sugars content of breakfast cereals in the UK from 1992 to 2015. Public Health Nutr 20, 15001512.
49. Buttriss, JL (2013) Food reformulation: the challenges to the food industry. Proc Nutr Soc 72, 6169.
50. Lawrence, F (2004) Not on the Label: What Really Goes into the Food on Your Plate. London: Penguin.
51. La Berge, AF (2008) How the ideology of low fat conquered America. J Hist Med Allied Sci 63, 139177.
52. Upritchard, J, Zeelenberg, MJ, Huizinga, H et al. (2005) Modern fat technology: what is the potential for heart health? Proc Nutr Soc 64, 379386.
53. Borges, MC, Louzada, ML, de Sá, TH et al. (2017) Artificially sweetened beverages and the response to the global obesity crisis. PLoS Med 14, e1002195.
54. Monteiro, CA & Cannon, G (2012) The food system: product reformulation will not improve public health. World Nutr 3, 406434.
55. Winkler, JT (2014) Nutritional reformulation: the unobtrusive strategy. Food Sci Technol J 28, 3740.
56. Millett, C, Laverty, AA, Stylianou, N et al. (2012) Impacts of a national strategy to reduce population salt intake in England: serial cross sectional study. PLoS One 7, e29836.
57. Baker, P & Friel, S (2014) Processed foods and the nutrition transition: evidence from Asia. Obes Rev 15, 564577.
58. Imamura, F, Micha, R, Khatibzadeh, S et al. (2015) Dietary quality among men and women in 187 countries in 1990 and 2010: a systematic assessment. Lancet Glob Health 3, e132e142.
59. Stuckler, D, McKee, M, Ebrahim, S et al. (2012) Manufacturing epidemics: the role of global producers in increased consumption of unhealthy commodities including processed foods, alcohol and tobacco. PLoS Med 9, e1001235.
60. Scott, C, Hawkins, B & Knai, C (2017) Food and beverage product reformulation as a corporate political strategy. Soc Sci Med 172, 3745.
61. Katz, B & Wlliams, LA (2011) Cleaning up processed foods. Food Technol 65, 33.
62. Poti, JM, Mendez, MA, Ng, SW et al. (2016) Highly processed and ready-to-eat packaged food and beverage purchases differ by race/ethnicity among US households. J Nutr 146, 17221730.
63. Corvalán, C, Reyes, M, Garmendia, ML et al. (2013) Structural responses to the obesity and non‐communicable diseases epidemic: the Chilean Law of Food Labeling and Advertising. Obes Rev 14, 7987.
64. Aguirre Pascal, B (2016) Etiquetado: grandes empresas tendrán 50% de sus productos con advertencia, y han reformulado 1.550 alimentos. El Mercurio, 22 May. http://www.economiaynegocios.cl/noticias/noticias.asp?id=254368 (accessed June 2017).
65. Monteiro, CA, Cannon, G, Moubarac, J-C et al. (2015) Dietary guidelines to nourish humanity and the planet in the twenty-first century. A blueprint from Brazil. Public Health Nutr 18, 23112322.
66. Food and Agriculture Organization of the United Nations (2016) Food-based dietary guidelines – Uruguay. http://www.fao.org/nutrition/education/food-based-dietary-guidelines/regions/countries/uruguay/en/ (accessed March 2017).
67. Hawkes, C, Jewell, J & Allen, K (2013) A food policy package for healthy diets and the prevention of obesity and diet‐related non‐communicable diseases: the NOURISHING framework. Obes Rev 14, 159168.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Public Health Nutrition
  • ISSN: 1368-9800
  • EISSN: 1475-2727
  • URL: /core/journals/public-health-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed