Hostname: page-component-588bc86c8c-2kbc9 Total loading time: 0 Render date: 2023-12-01T04:56:05.474Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Rapid bottom-water circulation changes during the last glacial cycle in the coastal low-latitude NE Atlantic

Published online by Cambridge University Press:  20 January 2017

David Gallego-Torres*
Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain Departamento de Mineralogia y Petrologia (UGR), Facultad de Ciencias, Campus Fuentenueva, 18002 Granada, Spain
Oscar E. Romero
Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
Francisca Martínez-Ruiz
Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
Jung-Hyun Kim
NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, PO Box 59, AB Den Burg, 1790 Texel, The Netherlands
Barbara Donner
MARUM—Center for Marine Environmental Sciences, University of Bremen, P.O. Box 330440, 28334 Bremen, Germany
Miguel Ortega-Huertas
Departamento de Mineralogia y Petrologia (UGR), Facultad de Ciencias, Campus Fuentenueva, 18002 Granada, Spain
*Corrresponding author: Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR). Avenida de las Palmeras, 4. 18100 Armilla, Granada, Spain. E-mail (D. Gallego-Torres).


Previous paleoceanographic studies along the NW African margin focused on the dynamics of surface and intermediate waters, whereas little attention has been devoted to deep-water masses. Currently, these deep waters consist mainly of North Atlantic Deep Waters as part of the Atlantic Meridional Overturning Circulation (AMOC). However, this configuration was altered during periods of AMOC collapse. We present a high-resolution reconstruction of bottom-water ventilation and current evolution off Mauritania from the last glacial maximum into the early Holocene. Applying redox proxies (Mo, U and Mn) measured on sediments from off Mauritania, we describe changes in deep-water oxygenation and we infer the evolution of deep-water conditions during millennial-scale climate/oceanographic events in the area. The second half of Heinrich Event 1 and the Younger Dryas were recognized as periods of reduced ventilation, coinciding with events of AMOC reduction. We propose that these weakening circulation events induced deficient deep-water oxygenation in the Mauritanian upwelling region, which together with increased productivity promoted reducing conditions and enhanced organic-matter preservation. This is the first time the effect of AMOC collapse in the area is described at high resolution, broadening the knowledge on basin-wide oceanographic changes associated with rapid climate variability during the last deglaciation.

Research Article
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Adkins, J.F., McIntyre, K., and Schrag, D.P. The salinity, temperature, and δ18O of the glacial deep ocean. Science 298, (2002). 17691773.Google Scholar
Algeo, T.J., and Tribovillard, N. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. Chemical Geology 268, (2009). 211225.Google Scholar
Arthur, M.A., Brumsack, H.-J., Jenkyns, H.C., and Schlanger, S.O. Stratigraphy, geochemistry, and paleoceanography of organic carbon-rich Cretaceous sequences. Ginsburg, R.N., and Beauoin, B. Cretaceous Resources, Events and Rhythms. (1990). Kluwer, Dordrecht. 75119.Google Scholar
Bard, E. Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: paleoceanographic implications. Paleoceanography 3, (1988). 635645.Google Scholar
Bloemsma, M.R. et al. Modelling the joint variability of grain size and chemical composition in sediments. Sedimentary Geology 280, (2012). 135148.Google Scholar
Brumsack, H.J. Geochemistry of Cretaceous black shales from the Atlantic Ocean (DSDP Legs 11, 14, 36 and 41). Chemical Geology 31, (1980). 125.Google Scholar
Calvert, S.E., and Pedersen, T.F. Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Marine Geology 113, (1993). 6788.Google Scholar
Calvert, S.E., and Pedersen, T.F. Chapter fourteen elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: interpretation and application. Developments in Marine Geology (2007). 567644.Google Scholar
Chapman, M.R., and Shackleton, N.J. Millennial-scale fluctuations in North Atlantic heat flux during the last 150 000 years. Earth and Planetary Science Letters 159, (1998). 5770.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J., and Bond, G. Evidence for general instability of past climate from a 250-ka ice-core record. Nature 364, (1993). 218220.Google Scholar
de Lange, G.J. Distribution of exchangeable, fixed, organic and total nitrogen in interbedded turbiditic/pelagic sediments of the Madeira Abyssal Plain, eastern North Atlantic. Marine Geology 109, (1992). 95114.Google Scholar
de Lange, G.J. Oxic vs. anoxic diagenetic alteration of turbiditic sediments in the Madeira Abyssal Plain, eastern North Atlantic. Proceedings of the Ocean Drilling Program: Scientific Results 157, (1998). 573580.Google Scholar
de Lange, G.J., and Ten Haven, H.L. Recent sapropel formation in the Eastern Mediterranean. Nature 305, (1983). 797798.Google Scholar
de Lange, G.J., Thomson, J., Reitz, A., Slomp, C.P., Principato, M.S., Erba, E., and Corselli, C. Synchronous basin-wide formation and redox-controlled preservation of a Mediterranean sapropel. Nature Geoscience 1, (2008). 606610.Google Scholar
de Menocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., and Yarusinsky, M. Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quaternary Science Reviews 19, (2000). 347361.Google Scholar
de Menocal, P., Ortiz, J., Guilderson, T., and Sarnthein, M. Coherent high- and low-latitude climate variability during the Holocene warm period. Science 288, (2000). 21982202.Google Scholar
Eberwein, A., and Mackensen, A. Last Glacial Maximum paleoproductivity and water masses off NW-Africa: evidence from benthic foraminifera and stable isotopes. Marine Micropaleontology 67, (2008). 87103.Google Scholar
Filipsson, H.L., Romero, O.E., Jan-Berend, W.S., and Donner, B. Relationships between primary productivity and bottom-water oxygenation off northwest Africa during the last deglaciation. Journal of Quaternary Science 26, (2011). 448456.Google Scholar
Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta 43, (1979). 10751090.Google Scholar
Gallego-Torres, D., Martinez-Ruiz, F., Paytan, A., Jimenez-Espejo, F.J., and Ortega-Huertas, M. Pliocene–Holocene evolution of depositional conditions in the eastern Mediterranean: role of anoxia vs. productivity at time of sapropel deposition. Palaeogeography, Palaeoclimatology, Palaeoecology 246, (2007). 424439.Google Scholar
Gallego-Torres, D., Martinez-Ruiz, F., De Lange, G., Jimenez-Espejo, F.J., and Ortega-Huertas, M. Trace-elemental derived paleoceanographic and paleoclimatic conditions for Pleistocene Eastern Mediterranean sapropels. Palaeogeography Palaeoclimatology Palaeoecology 293, (2010). 7689.Google Scholar
Gherardi, J.M., Labeyrie, L., McManus, J.F., Francois, R., Skinner, L.C., and Cortijo, E. Evidence from the Northeastern Atlantic basin for variability in the rate of the meridional overturning circulation through the last deglaciation. Earth and Planetary Science Letters 240, (2005). 710723.Google Scholar
Grootes, P.M., and Stuiver, M. Oxygen 18/16 variability in Greenland snow and ice with 10-3- to 105-year time resolution. Journal of Geophysical Research 102, (1997). 2645526470.Google Scholar
Hall, I.R., Evans, H.K., and Thornalley, D.J.R. Deep water flow speed and surface ocean changes in the subtropical North Atlantic during the last deglaciation. Global and Planetary Change 79, (2011). 255263.Google Scholar
Haslett, S.K., and Davies, C.F.C. Late Quaternary climate-ocean changes in western North Africa: offshore geochemical evidence. Transactions of the Institute of British Geographers 31, (2006). 3452.Google Scholar
Jones, B., and Manning, D.A.C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology 111, (1994). 111129.Google Scholar
Kim, J.H., Meggers, H., Rimbu, N., Lohmann, G., Freudnethal, T., Müller, P.J., and Schneider, R.R. Impacts of the North Atlantic gyre circulation on Holocene climate off northwest Africa. Geology 35, (2007). 387390.Google Scholar
Kim, J.H., Romero, O.E., Lohmann, G., Donner, B., Laepple, T., Haam, E., and Sinninghe Damste, J.S. Pronounced subsurface cooling of North Atlantic waters off Northwest Africa during Dansgaard–Oeschger interstadials. Earth and Planetary Science Letters 339–340, (2012). 95102.Google Scholar
Kuhlmann, H., Meggers, H., Freudenthal, T., and Wefer, G. The transition of the monsoonal and the N Atlantic climate system off NW Africa during the Holocene. Geophysical Research Letters 31, (2004). 14.Google Scholar
Labeyrie, L., Waelbroeck, C., Cortijo, E., Michel, E., and Duplessy, J.C. Changes in deep water hydrology during the last deglaciation. Changements de l'hydrologie profonde pendant la dernière déglaciation 337, (2005). 919927.Google Scholar
Lippold, J., Mulitza, S., Mollenhauer, G., Weyer, S., Heslop, D., and Christl, M. Boundary scavenging at the East Atlantic margin does not negate use of 231 Pa/230Th to trace Atlantic overturning. Earth and Planetary Science Letters 333–334, (2012). 317331.Google Scholar
Lynch-Stieglitz, J., Adkins, J.F., Curry, W.B., Dokken, T., Hall, I.R., Herguera, J.C., Hirschi, J.J.M., Ivanova, E.V., Kissel, C., Marchal, O., Marchitto, T.M., McCave, I.N., McManus, J.F., Mulitza, S., Ninnemann, U., Peeters, F., Yu, E.F., and Zahn, R. Atlantic meridional overturning circulation during the last glacial maximum. Science 316, (2007). 6669.Google Scholar
Marchal, O., François, R., Stocker, T.F., and Joos, F. Ocean thermohaline circulation and sedimentary 231PA/230Th ratio. Paleoceanography 15, (2000). 625641.Google Scholar
Martinez, P., Bertrand, P., Shimmield, G.B., Cochrane, K., Jorissen, F.J., Foster, J., and Dignan, M. Upwelling intensity and ocean productivity changes off Cape Blanc (northwest Africa) during the last 70,000 years: geochemical and micropalaeontological evidence. Marine Geology 158, (1999). 5774.Google Scholar
Martrat, B. et al. Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin. Science 317, 5837 (2007). 502507.Google Scholar
McManus, J.F., Francois, R., Gherardl, J.M., Kelgwin, L., and Drown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, (2004). 834837.Google Scholar
McManus, J., Berelson, W.M., Klinkhammer, G.P., Hammond, D.E., and Holm, C. Authigenic uranium: relationship to oxygen penetration depth and organic carbon rain. Geochimica et Cosmochimica Acta 69, (2005). 95108.Google Scholar
Mittelstaedt, E. The ocean boundary along the northwest African coast: circulation and oceanographic properties at the sea surface. Progress in Oceanography 26, (1991). 307355.Google Scholar
Morford, J.L., Emerson, S.R., Breckel, E.J., and Kim, S.H. Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin. Geochimica et Cosmochimica Acta 69, (2005). 50215032.Google Scholar
Morford, J.L., Martin, W.R., François, R., and Carney, C.M. A model for uranium, rhenium, and molybdenum diagenesis in marine sediments based on results from coastal locations. Geochimica et Cosmochimica Acta 73, (2009). 29382960.Google Scholar
Mulitza, S. et al. Sahel megadroughts triggered by glacial slowdowns of Atlantic meridional overturning. Paleoceanography 23, 4 (2008). Google Scholar
Piotrowski, A.M., Galy, A., Nicholl, J.A.L., Roberts, N., Wilson, D.J., Clegg, J.A., and Yu, J. Reconstructing deglacial North and South Atlantic deep water sourcing using foraminiferal Nd isotopes. Earth and Planetary Science Letters 357–358, (2012). 289297.Google Scholar
Piper, D.Z., and Calvert, S.E. A marine biogeochemical perspective on black shale deposition. Earth-Science Reviews 95, (2009). 6396.Google Scholar
Praetorius, S.K., McManus, J.F., Oppo, D.W., and Curry, W.B. Episodic reductions in bottom-water currents since the last ice age. Nature Geoscience 1, (2008). 449452.Google Scholar
Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 419, (2002). 207214.Google Scholar
Roberts, N.L., Piotrowski, A.M., McManus, J.F., and Keigwin, L.D. Synchronous deglacial overturning and water mass source changes. Science 327, (2012). 7578.Google Scholar
Romero, O.E., Kim, J.H., and Donner, B. Submillennial-to-millennial variability of diatom production off Mauritania, NW Africa, during the last glacial cycle. Paleoceanography 23, (2008). Google Scholar
Rutberg, R.L., Hemming, S.R., and Goldstein, S.L. Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios. Nature 405, (2000). 935938.Google Scholar
Sarnthein, M., Tetzlaff, G., Koopmann, B., Wolter, K., and Pflaumann, U. Glacial and interglacial wind regimes over the eastern subtropical Atlantic and North-West Africa. Nature 293, (1981). 193196.Google Scholar
Schmidt, B.C., and Lynch-Stieglitz, J. Florida Straits deglacial temperature and salinity change: implications for tropical hydrologic cycle variability. Paleoceanography 26, (2011). PA4205 Google Scholar
Skinner, L.C., and Shackleton, N.J. Deconstructing terminations I and II: revisiting the glacioeustatic paradigm based on deep-water temperature estimates. Quaternary Science Reviews 25, (2006). 33123321.Google Scholar
Staubwasser, M., Sirocko, F., Grootes, P.M., and Erlenkeuser, H. South Asian monsoon climate change and radiocarbon in the Arabian Sea during early and middle Holocene. Paleoceanography 17, (2002). 15-1 Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., Van Der Plicht, J., and Spurk, M. INTCAL98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40, (1998). 10411083.Google Scholar
Thomson, J., Higgs, N.C., Croudace, I.W., Colley, S., and Hydes, D.J. Redox zonation of elements at an oxic/postoxic boundary in deep-sea sediments. Geochemical and Comochimical Acta 57, (1993). 579595.Google Scholar
Thomson, J., Higgs, N.C., Wilson, T.R.S., Croudace, I.W., de Lange, G.J., and van Santvoort, P.J.M. Redistribution and geochemical behaviour of redox-sensitive elements around S1, the most recent eastern Mediterranean sapropel. Geochimica et Cosmochimica Acta 59, (1995). 34873501.Google Scholar
Thornalley, D.J.R., Elderfield, H., and McCave, I.N. Reconstructing North Atlantic deglacial surface hydrography and its link to the Atlantic overturning circulation. Global and Planetary Change 79, (2011). 163175.Google Scholar
Tjallingii, R. et al. Coherent high- and low-latitude control of the northwest African hydrological balance. Nature Geoscience 1, 10 (2008). 670675.Google Scholar
Tribovillard, N., Algeo, T.J., Lyons, T., and Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology 232, (2006). 1232.Google Scholar
van Der Weijden, C.H. Pitfalls of normalization of marine geochemical data using a common divisor. Marine Geology 184, (2002). 167187.Google Scholar
van Santvoort, P.J.M., de Lange, G.J., Thomson, J., Cussen, H., Wilson, T.R.S., Krom, M.D., and Strohle, K. Active post-depositional oxidation of the most recent sapropel (S1) in sediments of the eastern Mediterranean Sea. Geochimica et Cosmochimica Acta 60, (1996). 40074024.Google Scholar
Zhao, M., Eglinton, G., Haslett, S.K., Jordan, R.W., Sarnthein, M., and Zhang, Z. Marine and terrestrial biomarker records for the last 35,000 years at ODP site 658C off NW Africa. Organic Geochemistry 31, (2000). 919930.Google Scholar