Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-18T05:39:48.008Z Has data issue: false hasContentIssue false

A review of climate reconstructions from terrestrial climate archives covering the first millennium AD in northwestern Europe

Published online by Cambridge University Press:  08 October 2018

Dana F.C. Riechelmann*
Johannes Gutenberg-University Mainz, Institute of Geosciences, Johann-Joachim-Becher-Weg 21, D-55128 Mainz, Germany Utrecht University, Department of Physical Geography, Princetonlaan 8A, NL-3584 CB Utrecht, The Netherlands
Marjolein T.I.J. Gouw-Bouman
Utrecht University, Department of Physical Geography, Princetonlaan 8A, NL-3584 CB Utrecht, The Netherlands
*Corresponding author at: Johannes Gutenberg-University Mainz, Institute of Geosciences, Johann-Joachim-Becher-Weg 21, D-55128 Mainz, Germany. E-mail address: (Dana F.C. Riechelmann).


Large changes in landscape, vegetation, and culture in northwestern (NW) Europe during the first millennium AD seem concurrent with climatic shifts. Understanding of this relation requires high-resolution palaeoclimate reconstructions. Therefore, we compiled available climate reconstructions from sites across NW Europe (extent research area: 10°W–20°E, 45°–60°N) through review of literature and the underlying data, to identify supraregional climatic changes in this region. All reconstructions cover the period from AD 1 to 1000 and have a temporal resolution of ≤50 yr. This resulted in 22 climate reconstructions/proxy records based on different palaeoclimate archives: chironomids (1), pollen (6), Sphagnum mosses (1), stalagmites (8), testate amoebae (4), and tree rings (2). Comparing all temperature reconstructions, we conclude that summer temperatures between AD 1 and 250 were relatively high, and the period between AD 250 and 700 was characterised by colder summer conditions. The period from AD 700 to 1000 was again characterised by warmer summers. These temperature shifts occurred in the whole of NW Europe. In contrast, the compilation of precipitation reconstructions does not show a common pattern across NW Europe either as a result of a heterogeneous precipitation pattern or the lack of suitable and consistent precipitation proxies.

Review Article
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Baker, A., Hellstrom, J.C., Kelly, B.F.J., Mariethoz, G., Trouet, V., 2015. A composite annual-resolution stalagmite record of North Atlantic climate over the last three millennia. Scientific Reports 5, 10307.Google Scholar
Barber, K., Brown, A., Langdon, P., Hughes, P., 2013. Comparing and cross-validating lake and bog palaeoclimatic records: a review and a new 5,000 year chironomid-inferred temperature record from northern England. Journal of Paleolimnology 49, 497512.Google Scholar
Barber, K.E., 1981. Peat Stratigraphy and Climate Change: A Palaeoecological Test of the Theory of the Cyclic Peat Bog Regeneration. A.A. Balkema, Rotterdam, the Netherlands.Google Scholar
Barber, K.E., Langdon, P.G., 2007. What drives the peat-based palaeoclimate record? A critical test using multi-proxy climate records from northern Britain. Quaternary Science Reviews 26, 33183327.Google Scholar
Barber, K.E., Maddy, D., Rose, N., Stevenson, A.C., Stoneman, R., Thompson, R., 2000. Replicated proxy-climate signals over the last 2000 yr from two distant UK peat bogs: new evidence for regional palaeoclimate teleconnections. Quaternary Science Reviews 19, 481487.Google Scholar
Blundell, A., Barber, K., 2005. A 2800-year palaeoclimatic record from Tore Hill Moss, Strathspey, Scotland: the need for a multi-proxy approach to peat-based climate reconstructions. Quaternary Science Reviews 24, 12611277.Google Scholar
Boch, R., Spötl, C., 2011. Reconstructing palaeoprecipitation from an active cave flowstone. Journal of Quaternary Science 26, 675687.Google Scholar
Brauer, A., Endres, C., Negendank, J.F.W., 1999. Lateglacial calendar year chronology based on annually laminated sediments from Lake Meerfelder Maar, Germany. Quaternary International 61, 1725.Google Scholar
Briffa, K.R., Jones, P.D., Bartholin, T.S., Eckstein, D., Schweingruber, F.H., Karlén, W., Zetterberg, P., Eronen, M., 1992. Fennoscandian summers from ad 500: temperature changes on short and long timescales. Climate Dynamics 7, 111119.Google Scholar
Brooks, S.J., Birks, H.J.B., 2000. Chironomid-inferred late-glacial and early-Holocene mean July air temperatures for Krakenes Lake, western Norway. Journal of Paleolimnology 23, 7789.Google Scholar
Büntgen, U., Esper, J., Frank, D.C., Nicolussi, K., Schmidhalter, M., 2005. A 1052-year tree-ring proxy for Alpine summer temperatures. Climate Dynamics 25, 141153.Google Scholar
Büntgen, U., Myglan, V.S., Ljungqvist, F.C., McCormick, M., Di Cosmo, N., Sigl, M., Jungclaus, J., et al., 2016. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nature Geoscience 9, 231236.Google Scholar
Büntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D., Trouet, V., Kaplan, J.O., et al., 2011. 2500 Years of European climate variability and human susceptibility. Science 331, 578582.Google Scholar
Burns, S.J., Matter, A., Frank, N., Mangini, A., 1998. Speleothem-based paleoclimate record from northern Oman. Geology 26, 499502.Google Scholar
Chambers, F.M., Barber, K.E., Maddy, D., Brew, J., 1997. A 5500-year proxy-climate and vegetation record from blanket mire at Talla Moss, Borders, Scotland. Holocene 7, 391399.Google Scholar
Charman, D.J., 2010. Centennial climate variability in the British Isles during the mid–late Holocene. Quaternary Science Reviews 29, 15391554.Google Scholar
Charman, D.J., Barber, K.E., Blaauw, M., Langdon, P.G., Mauquoy, D., Daley, T.J., Hughes, P.D.M., Karofeld, E., 2009. Climate drivers for peatland palaeoclimate records. Quaternary Science Reviews 28, 18111819.Google Scholar
Charman, D.J., Blundell, A., 2007. A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands. Journal of Quaternary Science 22, 209221.Google Scholar
Charman, D.J., Brown, A.D., Hendon, D., Karofeld, E., 2004. Testing the relationship between Holocene peatland palaeoclimate reconstructions and instrumental data at two European sites. Quaternary Science Reviews 23, 137143.Google Scholar
Cheyette, F.L., 2008. The disappearance of the ancient landscape and the climatic anomaly of the early Middle Ages: a question to be pursued. Early Medieval Europe 16, 127165.Google Scholar
Cook, E.R., Seager, R., Kushnir, Y., Briffa, K.R., Büntgen, U., Frank, D., Krusic, P.J., et al., 2015. Old World megadroughts and pluvials during the Common Era. Science Advances 1, e1500561.Google Scholar
Dalton, C., Birks, H.J.B., Brooks, S.J., Cameron, N.G., Evershed, R.P., Peglar, S.M., Scott, J.A., Thompson, R., 2005. A multi-proxy study of lake-development in response to catchment changes during the Holocene at Lochnagar, north-east Scotland. Palaeogeography, Palaeoclimatology, Palaeoecology 221, 175201.Google Scholar
Dreßler, M., Selig, U., Dörfler, W., Adler, S., Schubert, H., Hübener, T., 2006. Environmental changes and the Migration Period in northern Germany as reflected in the sediments of Lake Dudinghausen. Quaternary Research 66, 2537.Google Scholar
Dugmore, A.J., Larsen, G., Newton, A.J., 1995. Seven tephra isochrones in Scotland. Holocene 5, 257266.Google Scholar
Ervynck, A., Baeteman, C., Demiddele, H., Hollevoet, Y., Pieters, M., Schelvis, J., Tys, D., Van Strydonck, M., Verhaeghe, F., 1999. Human occupation because of a regression, or the cause of a transgression. A critical review of the interaction between geological events and human occupation in the Belgian coastal plain during the first millennium AD. Probleme der Küstenforschung im südlichen Nordseegebiet 26, 97121.Google Scholar
Esper, J., Frank, D., Büntgen, U., Verstege, A., Luterbacher, J., Xoplaki, E., 2007. Long-term drought severity variations in Morocco. Geophysical Research Letters 34, L17702.Google Scholar
Fohlmeister, J., Schröder-Ritzrau, A., Scholz, D., Spötl, C., Riechelmann, D.F.C., Mudelsee, M., Wackerbarth, A., et al., 2012. Bunker Cave stalagmites: an archive for central European Holocene climate variability. Climate of the Past 8, 17511764.Google Scholar
Forster, E.E., 2010. Palaeoecology of Human Impact in Northwest England during the Early Medieval Period: Investigating “Cultural Decline” in the Dark Ages. PhD dissertation, University of Southampton, Southampton, UK.Google Scholar
Frisia, S., Borsato, A., Mangini, A., Spötl, C., Madonia, G., Sauro, U., 2006. Holocene climate variability in Sicily from a discontinuous stalagmite record and the Mesolithic to Neolithic transition. Quaternary Research 66, 388400.Google Scholar
Fuller, L., Baker, A., Fairchild, I.J., Spötl, C., Marca-Bell, A., Rowe, P., Dennis, P.F., 2008. Isotope hydrology of dripwaters in a Scottish cave and implications for stalagmite palaeoclimate research. Hydrology and Earth System Sciences 12, 10651074.Google Scholar
Galka, M., Miotk-Szpiganowicz, G., Goslar, T., Jesko, M., van der Knaap, W.O., Lamentowicz, M., 2013. Palaeohydrology, fires and vegetation succession in the southern Baltic during the last 7500 years reconstructed from a raised bog based on multi-proxy data. Palaeogeography, Palaeoclimatology, Palaeoecology 370, 209221.Google Scholar
Geirsdóttir, Á., Miller, G.H., Axford, Y., Sadís, Ó., 2009. Holocene and latest Pleistocene climate and glacier fluctuations in Iceland. Quaternary Science Reviews 28, 21072118.Google Scholar
Gräslund, B., Price, N., 2012. Twilight of the gods? The “dust veil event” of AD 536 in critical perspective. Antiquity 86, 428443.Google Scholar
Helama, S., Jones, P.D., Briffa, K.R., 2017a. Dark Ages Cold Period: a literature review and directions for future research. Holocene 27, 16001606.Google Scholar
Helama, S., Jones, P.D., Briffa, K.R., 2017b. Limited Late Antique cooling. Nature Geoscience 10, 242243.Google Scholar
Kalis, A.J., Karg, S., Meurers-Balke, H., Teunissen-van Oorschot, H., 2008. Mensch und Vegetation am Unteren Niederrhein währen der Eisen- und Römerzeit. In: Müller, M., Schalles, H.-J., Zieling, N. (Eds.), Colonia Ulpia Traiana, Xanten und sein Umland in römischer Zeit. Xantener Berichte. Geschichte der Stadt Xanten. Verlag Philipp von Zabern, Mainz am Rhein, Germany, pp. 3148.Google Scholar
Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15, 259263.Google Scholar
Kress, A., Saurer, M., Siegwolf, R.T.W., Frank, D.C., Esper, J., Bugmann, H., 2010. A 350 year drought reconstruction from Alpine tree ring stable isotopes. Global Biogeochemical Cycles 24, 116.Google Scholar
Lamentowicz, M., Cedro, A., Galka, M., Goslar, T., Miotk-Szpiganowicz, G., Mitchell, E.A.D., Pawlyta, J., 2008. Last millennium palaeoenvironmental changes from a Baltic bog (Poland) inferred from stable isotopes, pollen, plant macrofossils and testate amoebae. Palaeogeography, Palaeoclimatology, Palaeoecology 265, 93106.Google Scholar
Lamentowicz, M., Mitchell, E.A.D., 2005. The ecology of testate amoebae (protists) in sphagnum in north-western Poland in relation to peatland ecology. Microbial Ecology 50, 4863.Google Scholar
Langdon, P.G., Barber, K.E., Hughes, P.D.M., 2003. A 7500-year peat-based palaeoclimatic reconstruction and evidence for an 1100-year cyclicity in bog surface wetness from Temple Hill Moss, Pentland Hills, southeast Scotland. Quaternary Science Reviews 22, 259274.Google Scholar
Langdon, P.G., Barber, K.E., Lomas-Clarke, S.H., 2004. Reconstructing climate and environmental change in northern England through chironomid and pollen analyses: evidence from Talkin Tarn, Cumbria. Journal of Paleolimnology 32, 197213.Google Scholar
Larsen, L.B., Vinther, B.M., Briffa, K.R., Melvin, T.M., Clausen, H.B., Jones, P.D., Siggaard-Andersen, M.L., et al., 2008. New ice core evidence for a volcanic cause of the A.D. 536 dust veil. Geophysical Research Letters 35, L04708.Google Scholar
Litt, T., Schölzel, C., Kühl, N., Brauer, A., 2009. Vegetation and climate history in the Westeifel Volcanic Field (Germany) during the past 11 000 years based on annually laminated lacustrine maar sediments. Boreas 38, 679690.Google Scholar
Ljungqvist, F.C., 2009. Temperature proxy records covering the last two millenia: A tabular and visual overview. Geografiska Annaler: Series A, Physical Geography 91, 1129.Google Scholar
Ljungqvist, F.C., 2010. A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia. Geografiska Annaler: Series A, Physical Geography 92, 339351.Google Scholar
Luterbacher, J., Werner, J.P., Smerdon, J.E., Fernández-Donado, L., González-Rouco, F.J., Barriopedro, D., Ljungqvist, F.C., et al., 2016. European summer temperatures since Roman times. Environmental Research Letters 11, 024001.Google Scholar
Mangini, A., 2005. Assessing the variability of precipitation during the Holocene from stalagmite records. Società Astronomica Italiana 76, 755759.Google Scholar
Mangini, A., Spötl, C., Verdes, P., 2005. Reconstruction of temperature in the Central Alps during the past 2000 yr from a δ18O stalagmite record. Earth and Planetary Science Letters 235, 741751.Google Scholar
McCormick, M., Büntgen, U., Cane, M.A., Cook, E.R., Harper, K., Huybers, P., Litt, T., et al., 2012. Climate change during and after the Roman Empire: reconstructing the past from scientific and historical evidence. Journal of Interdisciplinary History 43, 169220.Google Scholar
McDermott, F., Mattey, D.P., Hawkesworth, C., 2001. Centennial-scale Holocene climate variability revealed by a high-resolution speleothem δ18O record from SW Ireland. Science 294, 13281331.Google Scholar
Ménot, G., Burns, S.J., 2001. Carbon isotopes in ombrogenic peat bog plants as climatic indicators: calibration from an altitudinal transect in Switzerland. Organic Geochemistry 32, 233245.Google Scholar
Moschen, R., Kühl, N., Peters, S., Vos, H., Lücke, A., 2011. Temperature variability at Dürres Maar, Germany during the Migration Period and at High Medieval Times, inferred from stable carbon isotopes of Sphagnum cellulose. Climate of the Past 7, 10111026.Google Scholar
Moschen, R., Kühl, N., Rehberger, I., Lücke, A., 2009. Stable carbon and oxygen isotopes in sub-fossil Sphagnum: assessment of their applicability for palaeoclimatology. Chemical Geology 259, 262272.Google Scholar
Niggemann, S., Mangini, A., Richter, D.K., Wurth, G., 2003. A paleoclimate record of the last 17,600 years in stalagmites from the B7 cave, Sauerland, Germany. Quaternary Science Reviews 22, 555567.Google Scholar
Pierik, H.J., Cohen, K.M., Stouthamer, E., 2016. A new GIS approach for reconstructing and mapping dynamic late Holocene coastal plain palaeogeography. Geomorphology 270, 5570.Google Scholar
Proctor, C., Baker, A., Barnes, W., 2002. A three thousand year record of North Atlantic climate. Climate Dynamics 19, 449454.Google Scholar
Proctor, C.J., Baker, A., Barnes, W.L., Gilmour, M.A., 2000. A thousand year speleothem proxy record of North Atlantic climate from Scotland. Climate Dynamics 16, 815820.Google Scholar
Rasmussen, S.O., Andersen, K.K., Svensson, A.M., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Siggaard-Andersen, M.L., et al., 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research: Atmospheres 111, D06102.Google Scholar
Richards, D.A., Dorale, J.A., 2003. Uranium-series chronology and environmental applications of speleothems. Reviews in Mineralogy and Geochemistry 52, 407460.Google Scholar
Riechelmann, D.F.C., Deininger, M., Scholz, D., Riechelmann, S., Schröder-Ritzrau, A., Spötl, C., Richter, D.K., Mangini, A., Immenhauser, A., 2013. Disequilibrium carbon and oxygen isotope fractionation in recent cave calcite: comparison of cave precipitates and model data. Geochimica et Cosmochimica Acta 103, 232244.Google Scholar
Riechelmann, D.F.C., Schröder-Ritzrau, A., Scholz, D., Fohlmeister, J., Spötl, C., Richter, D.K., Mangini, A., 2011. Monitoring Bunker Cave (NW Germany): a prerequisite to interpret geochemical proxy data of speleothems from this site. Journal of Hydrology 409, 682695.Google Scholar
Scholz, D., Hoffmann, D.L., 2008. 230Th/U-dating of fossil reef corals and speleothems. Quaternary Science Journal (Eiszeitalter und Gegenwart) 57, 5277.Google Scholar
Sundqvist, H.S., Zhang, Q., Moberg, A., Holmgren, K., Körnich, H., Nilsson, J., Brattström, G., 2010. Climate change between the mid and late Holocene in the northern high latitudes. Part 1: survey of temperature and precipitation proxy data. Climate of the Past 6, 591608.Google Scholar
Swindles, G.T., Lawson, I.T., Matthews, I.P., Blaauw, M., Daley, T.J., Charman, D.J., Roland, T.P., et al., 2013. Centennial-scale climate change in Ireland during the Holocene. Earth-Science Reviews 126, 300320.Google Scholar
Teunissen, D., 1990. Palynologisch onderzoek in het oostelijk rivierengebied: een overzicht. Mededelingen van de afdeling Biogeologie van de Discipline Biologie van de Katholieke Universiteit van Nijmegen, Nijmegen, the Netherlands.Google Scholar
Tinner, W., Lotter, A.F., Ammann, B., Conedera, M., Hubschmid, P., van Leeuwen, J.F.N., Wehrli, M., 2003. Climatic change and contemporaneous land-use phases north and south of the Alps 2300 BC to 800 AD. Quaternary Science Reviews 22, 14471460.Google Scholar
Tipping, R., 1995. Holocene evolution of a lowland Scottish landscape: Kirkpatrick Fleming. Part I, peat- and pollen-stratigraphic evidence for raised moss development and climatic change. Holocene 5, 6981.Google Scholar
Toohey, M., Krüger, K., Sigl, M., Stordal, F., Svensen, H., 2016. Climatic and societal impacts of a volcanic double event at the dawn of the Middle Ages. Climatic Change 136, 401412.Google Scholar
Toonen, W.H.J., 2013. A Holocene Flood Record of the Lower Rhine. PhD dissertation, Utrecht University, Utrecht, the Netherlands.Google Scholar
Vinther, B.M., Clausen, H.B., Johnsen, S.J., Rasmussen, S.O., Andersen, K.K., Buchardt, S.L., Dahl-Jensen, D., et al., 2006. A synchronized dating of three Greenland ice cores throughout the Holocene. Journal of Geophysical Research: Atmospheres 111, D13102.Google Scholar
Vollweiler, N., Scholz, D., Mühlinghaus, C., Mangini, A., Spötl, C., 2006. A precisely dated climate record for the last 9 kyr from three high alpine stalagmites, Spannagel Cave, Austria. Geophysical Research Letters 33, L20703.Google Scholar
Wanner, H., Beer, J., Bütikofer, J., Crowley, T.J., Cubasch, U., Flückiger, J., Goosse, H., et al., 2008. Mid- to late Holocene climate change: an overview. Quaternary Science Reviews 27, 17911828.Google Scholar
Wanner, H., Solomina, O., Grosjean, M., Ritz, S.P., Jetel, M., 2011. Structure and origin of Holocene cold events. Quaternary Science Reviews 30, 31093123.Google Scholar
Wickham, C., 2009. The Inheritance of Rome: A History of Europe from 400 to 1000. Penguin, New York.Google Scholar
Wilson, R., Anchukaitis, K., Briffa, K.R., Büntgen, U., Cook, E., D’Arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B., Hegerl, G., Helama, S., Klesse, S., Krusic, P.J., Linderholm, H.W., Myglan, V., Osborn, T.J., Rydval, M., Schneider, L., Schurer, A., Wiles, G., Zhang, P., Zorita, E., 2016. Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context. Quaternary Science Reviews 134, 118.Google Scholar
Wilson, R.J.S., Luckman, B.H., Esper, J., 2005. A 500 year dendroclimatic reconstruction of spring–summer precipitation from the lower Bavarian Forest region, Germany. International Journal of Climatology 25, 611630.Google Scholar
Woodland, W.A., Charman, D.J., Sims, P.C., 1998. Quantitative estimates of water tables and soil moisture in Holocene peatlands from testate amoebae. Holocene 8, 261273.Google Scholar
Zolitschka, B., 1998. Paläoklimatische Bedeutung laminierter Sedimente. Gebr. Borntraeger, Berlin.Google Scholar
Zolitschka, B., Brauer, A., Negendank, J.F.W., Stockhausen, H., Lang, A., 2000. Annually dated late Weichselian continental paleoclimate record from the Eifel, Germany. Geology 28, 783786.Google Scholar
Supplementary material: File

Riechelmann and Gouw-Bouman supplementary material

Riechelmann and Gouw-Bouman supplementary material 1

Download Riechelmann and Gouw-Bouman supplementary material(File)
File 204.8 KB