Skip to main content Accessibility help
Hostname: page-component-7ccbd9845f-2c279 Total loading time: 0.349 Render date: 2023-01-30T08:15:20.578Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Temperatures recorded by cosmogenic noble gases since the last glacial maximum in the Maritime Alps

Published online by Cambridge University Press:  11 December 2018

Marissa M. Tremblay*
Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California 94720-4767, USA Berkeley Geochronology Center, Berkeley, California 94709, USA
David L. Shuster
Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California 94720-4767, USA Berkeley Geochronology Center, Berkeley, California 94709, USA
Matteo Spagnolo
Department of Geography and Environment, School of Geosciences, University of Aberdeen, Aberdeen AB24 3UF, UK
Hans Renssen
Department of Natural Sciences and Environmental Health, University College of Southeast Norway, 3800 Bø, Norway
Adriano Ribolini
Dipartimento di Scienze della Terra, Università di Pisa, 56126 Pisa, Italy
*Corresponding author at: Scottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride G75 0QF, UK. E-mail address: (M.M. Tremblay).


While proxy records have been used to reconstruct late Quaternary climate parameters throughout the European Alps, our knowledge of deglacial climate conditions in the Maritime Alps is limited. Here, we report temperatures recorded by a new and independent geochemical technique—cosmogenic noble gas paleothermometry—in the Maritime Alps since the last glacial maximum. We measured cosmogenic 3He in quartz from boulders in nested moraines in the Gesso Valley, Italy. Paired with cosmogenic 10Be measurements and 3He diffusion experiments on quartz from the same boulders, the cosmogenic 3He abundances record the temperatures these boulders experienced during their exposure. We calculate effective diffusion temperatures (EDTs) over the last ∼22 ka ranging from 8°C to 25°C. These EDTs, which are functionally related to, but greater than, mean ambient temperatures, are consistent with temperatures inferred from other proxies in nearby Alpine regions and those predicted by a transient general circulation model. In detail, however, we also find different EDTs for boulders from the same moraines, thus limiting our ability to interpret these temperatures. We explore possible causes for these intra-moraine discrepancies, including variations in radiative heating, our treatment of complex helium diffusion, uncertainties in our grain size analyses, and unaccounted-for erosion or cosmogenic inheritance.

Research Article
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Annan, J.D., Hargreaves, J.C., 2013. A new global reconstruction of temperature changes at the Last Glacial Maximum. Climate of the Past 9, 367376.CrossRefGoogle Scholar
Annan, J.D., Hargreaves, J.C., 2015. A perspective on model-data surface temperature comparison at the Last Glacial Maximum. Quaternary Science Reviews 107, 110.CrossRefGoogle Scholar
Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J., 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, 174195.CrossRefGoogle Scholar
Bartlein, P.J., Harrison, S.P., Brewer, S., Connor, S., Davis, B., Gajewski, K., Guiot, J., et al., 2011. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Climate Dynamics 37, 775802.CrossRefGoogle Scholar
Bartlett, M.G., Chapman, D.S., Harris, R.N., 2006. A decade of ground–air temperature tracking at Emigrant Pass Observatory, Utah. Journal of Climate 19, 37223731.CrossRefGoogle Scholar
Becker, P., Seguinot, J., Jouvet, G., Funk, M., 2016. Last Glacial Maximum precipitation pattern in the Alps inferred from glacier modelling. Geographica Helvetica 71, 173187.CrossRefGoogle Scholar
Blaga, C.I., Reichart, G.-J., Lotter, A.F., Anselmetti, F.S., Sinninghe Damsté, J.S., 2013. A TEX 86 lake record suggests simultaneous shifts in temperature in Central Europe and Greenland during the last deglaciation. Geophysical Research Letters 40, 948953.CrossRefGoogle Scholar
Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N., Nishiizumi, K., Phillips, F., Schaefer, J., Stone, J., 2016. Geological calibration of spallation production rates in the CRONUS-Earth project. Quaternary Geochronology 31, 188198.CrossRefGoogle Scholar
Brisset, E., Guiter, F., Miramont, C., Revel, M., Anthony, E.J., Delhon, C., Arnaud, F., Malet, E., de Beaulieu, J.-L., 2015. Lateglacial/Holocene environmental changes in the Mediterranean Alps inferred from lacustrine sediments. Quaternary Science Reviews 110, 4971.CrossRefGoogle Scholar
Buckenham, M.H., Rogers, J., 1954. Flotation of quartz and feldspar by dodecylamine. Transactions of Institute of Mining and Metallurgy 64, l30.Google Scholar
Casazza, G., Grassi, F., Zecca, G., Minuto, L., 2016. Phylogeographic insights into a periphera refugium: the importance of cumulative effect of glaciation on the genetic structure of two endemic plants. PLoS ONE 11, e0166983.CrossRefGoogle Scholar
Claude, A., Ivy-Ochs, S., Kober, F., Antognini, M., Salcher, B., Kubik, P.W., 2014. The Chironico landslide (Valle Leventina, southern Swiss Alps): age and evolution. Swiss Journal of Geosciences 107, 273291.CrossRefGoogle Scholar
Collins, W.D., Bitz, C.M., Blackmon, M.L., Bonan, G.B., Bretherton, C.S., Carton, J.A., Chang, P., et al., 2006. The Community Climate System Model version 3 (CCSM3). Journal of Climate 19, 21222143.CrossRefGoogle Scholar
Davis, B.A.S., Brewer, S., Stevenson, A.C., Guiot, J., 2003. The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Science Reviews 22, 17011716.CrossRefGoogle Scholar
Durand, Y., Giraud, G., Laternser, M., Etchevers, P., Mérindol, L., Lesaffre, B., 2009a. Reanalysis of 47 years of climate in the French Alps (1958–2005): climatology and trends for snow cover. Journal of Applied Meteorology and Climatology 48, 24872512.CrossRefGoogle Scholar
Durand, Y., Laternser, M., Giraud, G., Etchevers, P., Lesaffre, B., Mérindol, L., 2009b. Reanalysis of 44 yr of climate in the French Alps (1958–2002): methodology, model validation, climatology, and trends for air temperature and precipitation. Journal of Applied Meteorology and Climatology 48, 429449.CrossRefGoogle Scholar
Fechtig, H., Kalbitzer, S., 1966. The diffusion of argon in potassium-bearing solids. In: Schaeffer, O.A., Zahringer, J. (eds). Potassium Argon Dating. Springer, Berlin, pp. 68107.CrossRefGoogle Scholar
Federici, P.R., Granger, D.E., Pappalardo, M., Ribolini, A., Spagnolo, M., Cyr, A.J., 2008. Exposure age dating and equilibrium line altitude reconstruction of an Egesen moraine in the Maritime Alps, Italy. Boreas 37, 245253.CrossRefGoogle Scholar
Federici, P.R., Granger, D.E., Ribolini, A., Spagnolo, M., Pappalardo, M., Cyr, A.J., 2012. Last Glacial Maximum and the Gschnitz stadial in the Maritime Alps according to 10Be cosmogenic dating. Boreas 41, 277291.CrossRefGoogle Scholar
Federici, P.R., Pappalardo, M., Ribolini, A., 2003. Geomorphological Map of the Maritime Alps Natural Park and Surroundings (Argentera Massif, Italy). 1:25,000. Selca, Florence.Google Scholar
Federici, P.R., Ribolini, A., Spagnolo, M., 2017. Glacial history of the Maritime Alps from the Last Glacial Maximum to the Little Ice Age. Geological Society of London Special Publication 433, 137159.CrossRefGoogle Scholar
Gandouin, E., Franquet, E., 2002. Late Glacial and Holocene chironomid assemblages in Lac Long Inférieur (southern France, 2090 m): palaeoenvironmental and palaeoclimatic implications. Journal of Paleolimnology 28, 317328.CrossRefGoogle Scholar
Gardner, A.S., Sharp, M.J., Koerner, R.M., Labine, C., Boon, S., Marshall, S.J., Burgess, D.O., Lewis, D., 2009. Near-surface temperature lapse rates over Arctic glaciers and their implications for temperature downscaling. Journal of Climate 22, 42814298.CrossRefGoogle Scholar
Gourbet, L., Shuster, D.L., Balco, G., Cassata, W.S., Renne, P.R., Rood, D., 2012. Neon diffusion kinetics in olivine, pyroxene and feldspar: retentivity of cosmogenic and nucleogenic neon. Geochimica et Cosmochimica Acta 86, 2136.CrossRefGoogle Scholar
Granger, D.E., Lifton, N.A., Willenbring, J.K., 2013. A cosmic trip: 25 years of cosmogenic nuclides in geology. Geological Society of America Bulletin 125, 13791402.CrossRefGoogle Scholar
Hall, K., Lindgren, B.S., Jackson, P., 2005. Rock albedo and monitoring of thermal conditions in respect of weathering: some expected and some unexpected results. Earth Surface Processes and Landforms 30, 801812.CrossRefGoogle Scholar
Harrison, S.P., Bartlein, P.J., Izumi, K., Li, G., Annan, J., Hargreaves, J., Braconnot, P., Kageyama, M., 2015. Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nature Climate Change 5, 735743.CrossRefGoogle Scholar
Harrison, T.M., Lovera, O.M., Matthew, T.H., 1991. 40Ar/39Ar results for alkali feldspars containing diffusion domains with differing activation energy. Geochimica et Cosmochimica Acta 55, 14351448.CrossRefGoogle Scholar
He, F., 2011. Simulating Transient Climate Evolution of the Last Deglaciation with CCSM 3. PhD dissertation, University of Wisconsin–Madison, Madison, WI.Google Scholar
Heilbronner, R., Barrett, S., 2013. Image Analysis in Earth Sciences: Microstructures and Textures of Earth Materials. Springer, Berlin.Google Scholar
Heiri, O., Brooks, S.J., Renssen, H., Bedford, A., Hazekamp, M., Ilyashuk, B., Jeffers, E.S., et al., 2014. Validation of climate model-inferred regional temperature change for late-glacial Europe. Nature Communications 5, 4914.CrossRefGoogle ScholarPubMed
Heiri, O., Millet, L., 2005. Reconstruction of Late Glacial summer temperatures from chironomid assemblages in Lac Lautrey (Jura, France). Journal of Quaternary Science 20, 3344.CrossRefGoogle Scholar
Heiri, O., Tinner, W., Lotter, A.F., 2004. Evidence for cooler European summers during periods of changing meltwater flux to the North Atlantic. Proceedings of the National Academy of Sciences USA 101, 1528515288.CrossRefGoogle ScholarPubMed
Heyman, J., Stroeven, A.P., Harbor, J.M., Caffee, M.W., 2011. Too young or too old: evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages. Earth and Planetary Science Letters 302, 7180.CrossRefGoogle Scholar
Hippe, K., Ivy-Ochs, S., Kober, F., Zasadni, J., Wieler, R., Wacker, L., Kubik, P.W., Schlüchter, C., 2014. Chronology of Lateglacial ice flow reorganization and deglaciation in the Gotthard Pass area, Central Swiss Alps, based on cosmogenic 10Be and in situ 14C. Quaternary Geochronology 19, 1426.CrossRefGoogle Scholar
Ilyashuk, E.A., Koinig, K.A., Heiri, O., Ilyashuk, B.P., Psenner, R., 2011. Holocene temperature variations at a high-altitude site in the Eastern Alps: a chironomid record from Schwarzsee ob Sölden, Austria. Quaternary Science Reviews 30, 176191.CrossRefGoogle Scholar
Ivy-Ochs, S., Kober, F., Alfimov, V., Kubik, P.W., Synal, H.-A., 2007. Cosmogenic 10Be, 21Ne and 36Cl in sanidine and quartz from Chilean ignimbrites. Nuclear Instruments & Methods in Physics Research B 259, 588594.CrossRefGoogle Scholar
Jost, A., Lunt, D., Kageyama, M., Abe-Ouchi, A., Peyron, O., Valdes, P.J., Ramstein, G., 2005. High-resolution simulations of the last glacial maximum climate over Europe: a solution to discrepancies with continental palaeoclimatic reconstructions? Climate Dynamics 24, 577590.CrossRefGoogle Scholar
Kessler, M.A., Anderson, R.S., Stock, G.M., 2006. Modeling topographic and climatic control of east-west asymmetry in Sierra Nevada glacier length during the Last Glacial Maximum. Journal of Geophysical Research: Earth Surface 111. F02002. Scholar
Ketcham, R.A., 2005. Computational methods for quantitative analysis of three-dimensional features in geological specimens. Geosphere 1, 3241.CrossRefGoogle Scholar
Kuhlemann, J., Rohling, E.J., Krumrei, I., Kubik, P., Ivy-Ochs, S., Kucera, M., 2008. Regional synthesis of Mediterranean atmospheric circulation during the Last Glacial Maximum. Science 321, 13381340.CrossRefGoogle ScholarPubMed
Lal, D., 1987. Production of 3He in terrestrial rocks. Chemical Geology 66, 8998.Google Scholar
Larocque, I., Finsinger, W., 2008. Late-glacial chironomid-based temperature reconstructions for Lago Piccolo di Avigliana in the southwestern Alps (Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 257, 207223.CrossRefGoogle Scholar
Liu, Z., Otto-Bliesner, B.L., He, F., Brady, E.C., Tomas, R., Clark, P.U., Carlson, A.E., et al., 2009. Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science 325, 310314.CrossRefGoogle ScholarPubMed
Loomis, S.E., Russell, J.M., Verschuren, D., Morrill, C., De Cort, G., Damsté, J.S.S., Olago, D., et al., 2017. The tropical lapse rate steepened during the Last Glacial Maximum. Science Advances 3, e1600815.CrossRefGoogle ScholarPubMed
Lovera, O.M., Grove, M., Mark Harrison, T., Mahon, K.I., 1997/8. Systematic analysis of K -feldspar 40Ar/39Ar step heating results: I. Significance of activation energy determinations. Geochimica et Cosmochimica Acta 61, 31713192.CrossRefGoogle Scholar
Lovera, O.M., Richter, F.M., 1989. The 40Ar/39Ar thermochronometry for slowly cooled samples. Journal of Geophysical Research 94, 17917.CrossRefGoogle Scholar
Lovera, O.M., Richter, F.M., Harrison, T.M., 1991. Diffusion domains determined by 39Ar released during step heating. Journal of Geophysical Research 96, 20572069.CrossRefGoogle Scholar
Luetscher, M., Boch, R., Sodemann, H., Spötl, C., Cheng, H., Edwards, R.L., Frisia, S., Hof, F., Müller, W., 2015. North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems. Nature Communications 6, 6344.CrossRefGoogle ScholarPubMed
Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A., González Rouco, J.F., Jansen, E., et al. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press, pp. 383464.Google Scholar
Mauri, A., Davis, B.A.S., Collins, P.M., Kaplan, J.O., 2015. The climate of Europe during the Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation. Quaternary Science Reviews 112, 109127.CrossRefGoogle Scholar
McGreevy, J.P., 1985. Thermal properties as controls on rock surface temperature maxima, and possible implications for rock weathering. Earth Surface Processes and Landforms 10, 125136.CrossRefGoogle Scholar
Monegato, G., Scardia, G., Hajdas, I., Rizzini, F., Piccin, A., 2017. The Alpine LGM in the boreal ice-sheets game. Scientific Reports 7, 2078.CrossRefGoogle ScholarPubMed
Nishiizumi, K., Imamura, M., Caffee, M.W., Southon, J.R., Finkel, R.C., McAninch, J., 2007. Absolute calibration of 10Be AMS standards. Nuclear Instruments & Methods in Physics Research B 258, 403413.CrossRefGoogle Scholar
Ortu, E., Brewer, S., Peyron, O., 2006. Pollen-inferred Paleoclimate reconstructions in mountain areas: problems and perspectives. Journal of Quaternary Science 21, 615627.CrossRefGoogle Scholar
Ortu, E., Peyron, O., Bordon, A., de Beaulieu, J.L., Siniscalco, C., Caramiello, R., 2008. Lateglacial and Holocene climate oscillations in the South-western Alps: an attempt at quantitative reconstruction. Quaternary International 190, 7188.CrossRefGoogle Scholar
Putkonen, J., Swanson, T., 2003. Accuracy of cosmogenic ages for moraines. Quaternary Research 59, 255261.CrossRefGoogle Scholar
Schmidt, G.A., Annan, J.D., Bartlein, P.J., Cook, B.I., Guilyardi, E., Hargreaves, J.C., Harrison, S.P., et al., 2014. Using palaeo-climate comparisons to constrain future projections in CMIP5. Climate of the Past 10, 221250.CrossRefGoogle Scholar
Schmittner, A., Urban, N.M., Shakun, J.D., Mahowald, N.M., Clark, P.U., Bartlein, P.J., Mix, A.C., Rosell-Melé, A., 2011. Climate sensitivity estimated from temperature reconstructions of the Last Glacial Maximum. Science 334, 13851388.CrossRefGoogle ScholarPubMed
Schneider, C.A., Rasband, W.S., Eliceiri, K.W., 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671675.CrossRefGoogle ScholarPubMed
Schwarz, N., Schlink, U., Franck, U., Großmann, K., 2012. Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators—an application for the city of Leipzig (Germany). Ecological Indicators 18, 693704.CrossRefGoogle Scholar
Shuster, D.L., Cassata, W.S., 2015. Paleotemperatures at the lunar surfaces from open system behavior of cosmogenic 38Ar and radiogenic 40Ar. Geochimica et Cosmochimica Acta 155, 154171.CrossRefGoogle Scholar
Shuster, D.L., Farley, K.A., 2005. Diffusion kinetics of proton-induced 21Ne, 3He, and 4He in quartz. Geochimica et Cosmochimica Acta 69, 23492359.CrossRefGoogle Scholar
Shuster, D.L., Farley, K.A., Sisterson, J.M., Burnett, D.S., 2004. Quantifying the diffusion kinetics and spatial distributions of radiogenic 4He in minerals containing proton-induced 3He. Earth and Planetary Science Letters 217, 1932.CrossRefGoogle Scholar
Stone, J.O., 2000. Air pressure and cosmogenic isotope production. Journal of Geophysical Research: Solid Earth 105, 2375323759.CrossRefGoogle Scholar
Tremblay, M.M., Shuster, D.L., Balco, G., 2014a. Cosmogenic noble gas paleothermometry. Earth and Planetary Science Letters 400, 195205.CrossRefGoogle Scholar
Tremblay, M.M., Shuster, D.L., Balco, G., 2014b. Diffusion kinetics of 3He and 21Ne in quartz and implications for cosmogenic noble gas paleothermometry. Geochimica et Cosmochimica Acta 142, 186204.CrossRefGoogle Scholar
Tremblay, M.M., Shuster, D.L., Balco, G., Cassata, W.S., 2017. Neon diffusion kinetics and implications for cosmogenic neon paleothermometry in feldspars. Geochimica et Cosmochimica Acta 205, 1430.CrossRefGoogle Scholar
Vermeesch, P., Baur, H., Heber, V.S., Kober, F., Oberholzer, P., Schaefer, J.M., Schlüchter, C., Strasky, S., Wieler, R., 2009. Cosmogenic 3He and 21Ne measured in quartz targets after one year of exposure in the Swiss Alps. Earth and Planetary Science Letters 284, 417425.CrossRefGoogle Scholar
von der Heydt, A.S., Dijkstra, H.A., van de Wal, R.S.W., Caballero, R., Crucifix, M., Foster, G.L., Huber, M., et al., Lessons on Climate Sensitivity from Past Climate Changes. Current Climate Change Reports 2, 148158.CrossRefGoogle Scholar
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Temperatures recorded by cosmogenic noble gases since the last glacial maximum in the Maritime Alps
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Temperatures recorded by cosmogenic noble gases since the last glacial maximum in the Maritime Alps
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Temperatures recorded by cosmogenic noble gases since the last glacial maximum in the Maritime Alps
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *