Skip to main content

Forces driving late Pleistocene (ca. 77–12 ka) landscape evolution in the Cimarron River valley, southwestern Kansas

  • Anthony L. Layzell (a1), Rolfe D. Mandel (a1), Greg A. Ludvigson (a1), Tammy M. Rittenour (a2) and Jon J. Smith (a1)...

This study presents stratigraphic, geomorphic, and paleoenvironmental (δ13C) data that provide insight into the late Pleistocene landscape evolution of the Cimarron River valley in the High Plains of southwestern Kansas. Two distinct valley fills (T-1 and T-2) were investigated. Three soils occur in the T-2 fill and five in the T-1 fill, all indicating periods of landscape stability or slow sedimentation. Of particular interest are two cumulic soils dating to ca. 48–28 and 13–12.5 ka. δ13C values are consistent with regional paleoenvironmental proxy data that indicate the prevalence of warm, dry conditions at these times. The Cimarron River is interpreted to have responded to these climatic changes and to local base level control. Specifically, aggradation occurred during cool, wet periods and slow sedimentation with cumulic soil formation occurred under warmer, drier climates. Significant valley incision (~ 25 m) by ca. 28 ka likely resulted from a lowering of local base level caused by deep-seated dissolution of Permian evaporite deposits.

Corresponding author
*Corresponding author.E-mail address: (A.L. Layzell).
Hide All
Aitken, M.J. (1998). An introduction to optical dating: the dating of Quaternary sediments by the use of photon-stimulated luminescence. Oxford University Press, (278 pp.)
Antevs, E. (1935). The occurrence of flints and extinct animals in pluvial deposits near Clovis, New Mexico, part II: Age of the Clovis lake clays. Proceedings of the Academy of Natural Sciences of Philadelphia 304312.
Baker, R.G. Bettis, E.A. III Mandel, R.D. Dorale, J.A. Fredlund, G.G. (2009). Mid-Wisconsinan environments on the eastern Great Plains. Quaternary Science Reviews 28, 9 873889.
Baker, R.G. Fredlund, G.G. Mandel, R.D. Bettis, E.A. (2000). Holocene environments of the central Great Plains: multi-proxy evidence from alluvial sequences, southeastern Nebraska. Quaternary International 67, 1 7588.
Bartlein, P.J. Anderson, K.H. Anderson, P.M. Edwards, M.E. Mock, C.J. Thompson, R.S. Webb, R.S. Webb, T. Whitlock, C. (1998). Paleoclimate simulations for North America over the past 21,000 years features of the simulated climate and comparisons with paleoenvironmental data. Quaternary Science Reviews 17, 549585.
Bement, L.C. Carter, B.J. Varney, R.A. Cummings, L.S. Sudbury, J.B. (2007). Paleo-environmental reconstruction and bio-stratigraphy, Oklahoma Panhandle, USA. Quaternary International 169, 3950.
Bettis, E.A. III Mandel, R.D. (2002). The effects of temporal and spatial patterns of Holocene erosion and alluviation on the archaeological record of the Central and Eastern Great Plains, U.S.A. Geoarchaeology: An International Journal 17, 141154.
Bettis, E.A. Muhs, D.R. Roberts, H.M. Wintle, A.G. (2003). Last Glacial loess in the conterminous USA. Quaternary Science Reviews 22, 19071946.
Birkeland, P.W. (1999). Soils and geomorphology. 3rd Edition Oxford University Press, Oxford. (430 pp.)
Blum, M.D. Törnqvist, T.E. (2000). Fluvial responses to climate and sea‐level change: a review and look forward. Sedimentology 47, 248.
Boutton, T.W. (1991). Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine, and freshwater environments. Carbon Isotope Techniques 1, 173
Boutton, T.W. (1996). Stable carbon isotope ratios of soil organic matter and their use as indicators of vegetation and climate change. Boutton, T.W., and Yamasaki, S.I. Mass spectrometry of soils. Marcel Dekker, New York. 4782.
Bull, W.B. (1991). Geomorphic response to climatic change. Oxford University Press, Oxford. (326 pp.)
Cooperative Holocene Mapping Project (COHMAP) (1988). Climatic changes of the last 18,000 years: observations and model simulations. Science 24, 10431052.
Cordova, C.E. Johnson, W.C. Mandel, R.D. Palmer, M.W. (2011). Late Quaternary environmental change inferred from phytoliths and other soil-related proxies: case studies from the central and southern Great Plains, USA. Catena 85, 2 87108.
Daniels, J.M. Knox, J.C. (2005). Alluvial stratigraphic evidence for channel incision during the Mediaeval Warm Period on the central Great Plains, USA. The Holocene 15, 736747.
Dansgaard, W. et al Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 6434 (1993). 218220.
Fenneman, N.M. (1931). Physiography of Western United States. McGraw-Hill, New York. (534 pp.)
Forman, S.L. Oglesby, R. Markgraf, V. Stafford, T. (1995). Paleoclimatic significance of late Quaternary eolian deposition on the Piedmont and High Plains, central United States. Global and Planetary Change 11, 3555.
Forman, S.L. Pierson, (2002). Late Pleistocene luminescence chronology of loess deposition in the Missouri and Mississippi river valleys, United States. Palaeogeography, Palaeoclimatology, Palaeoecology 186, 2546.
Fredlund, G.G. (1995). Late Quaternary pollen record from Cheyenne Bottoms, Kansas. Quaternary Research 43, 6779.
Fredlund, G.G. Tieszen, L.L. (1997). Phytolith and carbon isotope evidence for late Quaternary vegetation and climate change in the southern Black Hills, South Dakota. Quaternary Research 47, 206217.
Frye, J.C. (1950). Origin of Kansas Great Plains depressions. Kansas Geological Survey Bulletin 86, Kansas Geological Survey, Lawrence.
Frye, J.C. Hibbard, C.W. (1941). Pliocene and Pleistocene stratigraphy and paleontology of the Meade basin, southwestern Kansas. Kansas Geological Survey Bulletin 38, Kansas Geological Survey, Lawrence.
Frye, J.C. Leonard, A.B. (1952). Pleistocene Geology of Kansas. Kansas Geological Survey Bulletin 99, Kansas Geological Survey, Lawrence. (230 pp.)
Frye, J.C. Schoff, S.L. (1942). Deep-seated solution in the Meade Basin and vicinity, Kansas and Oklahoma. Transactions - American Geophysical Union 23, 3539.
Galbraith, R.F. Roberts, R.G. (2012). Statistical aspects of equivalent dose and error calculations and display in OSL dating: An overview and some recommendations. Quaternary Geochronology 11, 127.
Guerin, G. Mercier, N. Adamiec, G. (2011). Dose-rate conversion factors: update. Ancient TL 29, 58.
Gustavson, T.C. (1986). Geomorphic development of the Canadian River valley, Texas Panhandle: An example of regional salt dissolution and subsidence. Geological Society of America Bulletin 97, 459472.
Gutentag, E.D. (1963). Studies of the Pleistocene and Pliocene deposits in southwestern Kansas. Transactions of the Kansas Academy of Science 66, 606621.
Hall, S.A. (1990). Channel trenching and climatic change in the southern US Great Plains. Geology 18, 342345.
Haynes, C.V. Jr. Agogino, G.A. (1966). Prehistoric springs and geochronology of the Clovis site, New Mexico. American Antiquity 31, 812821.
High Plains Regional Climate Center, (2014). Period of record monthly climate summary for Sublette, Kansas (147922). University of Nebraska, Lincoln ( accessed Nov 2014)
Hill, H.W. Flower, B.P. Quinn, T.M. Hollander, D.J. Guilderson, T.P. (2006). Laurentide Ice Sheet meltwater and abrupt climate change during the last glaciation. Paleoceanography 21, 1 (PA1006)
Holliday, V.T. (1995). Stratigraphy and paleoenvironments of late Quaternary valley fills on the Southern High Plains. Geological Society of America Memoir 186,
Holliday, V.T. (2000). Folsom drought and episodic drying on the Southern High Plains from 10,900–10,200 14C B.P. Quaternary Research 53, 112.
Holliday, V.T. Haynes, C.V. Jr. Hofman, J.L. Meltzer, D.J. (1994). Geoarchaeology and geochronology of the Miami (Clovis) site, Southern High Plains of Texas. Quaternary Research 41, 234244.
Holliday, V.T. Hovorka, S.D. Gustavson, T.C. (1996). Lithostratigraphy and geochronology of fills in small playa basins on the Southern High Plains. Geological Society of America Bulletin 108, 953965.
Holliday, V.T. Meltzer, D.J. Mandel, R.D. (2011). Stratigraphy of the Younger Dryas chronozone and paleoenvironmental implications: central and southern Great Plains. Quaternary International 242, 520533.
Huntley, D.J. Godfrey-Smith, D.I. Thewalt, M.L.W. (1985). Optical dating of sediments. Nature 313, 105107.
Jacobs, K.C. Fritz, S.C. Swinehart, J.B. (2007). Lacustrine evidence for moisture changes in the Nebraska Sand Hills during Marine Isotope Stage 3. Quaternary Research 67, 246254.
Johnson, W.C. Martin, C.W. (1987). Holocene alluvial-stratigraphic studies from Kansas and adjoining states of the East-Central Plains. Johnson, W.C. Quaternary Environments of Kansas, Guidebook Series 5. Kansas Geological Survey, Lawrence. 109122.
Johnson, W.C. Willey, K.L. (2000). Isotopic and rock magnetic expression of environmental change at the Pleistocene–Holocene transition in the Central Great Plains. Quaternary International 67, 89106.
Johnson, W.C. Willey, K.L. Mason, J.A. May, D.W. (2007). Stratigraphy and environmental reconstruction at the middle Wisconsinan Gilman Canyon formation type locality, Buzzard's Roost, southwestern Nebraska, USA. Quaternary Research 67, 474486.
Knox, J.C. (1983). Responses of river systems to Holocene climates. Wright, H.E. Jr. Late Quaternary Environments of the United States – the Holocene. University of Minnesota Press, Minneapolis. 2641.
Kutzbach, J.E. (1987). Model simulations of the climatic patterns during the deglaciation of North America. Ruddiman, W.F., Wright, H.E. Jr. North America and Adjacent Oceans during the Last Deglaciation, The Geology of North America Vol. K-3, Geological Society of America, Boulder, Colorado. 425426.
Küchler, A.W. (1974). A new vegetation map of Kansas. Ecology 55, 586604.
Lisiecki, L.E. Raymo, M.E. (2005). A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, 1 PA1003
Maat, P.W. Johnson, W.C. (1996). Thermolumescence and new 14C age estimates for late Quaternary loesses in southwestern Nebraska. Geomorphology 17, 115128.
Mandel, R.D. (1994). Holocene landscape evolution in the Pawnee River Basin, Southwestern Kansas. Bulletin 236, Kansas Geological Survey, Lawrence. (117 pp.)
Mandel, R.D. (2008). Buried Paleoindian-age landscapes in stream valleys of the Central Plains, USA. Geomorphology 101, 342361.
Mandel, R.D. (2013). Geoarchaeology and Paleoenvironmental Context of the Eastep Site (14MY388), Southeast Kansas. The Kansas Anthropologist 33, 159174.
Mandel, R.D. Bettis, E.A. III (1995). Late Quaternary landscape evolution and stratigraphy in Eastern Nebraska. Flowerday, C.A. Geologic field trips in Nebraska and adjacent parts of Kansas and South Dakota. Conservation and Survey Division, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Guidebook 10, 7790.
Mandel, R.D. Bettis, E.A. III (2001). Late Quaternary landscape evolution in the South Fork Big Nemaha River Valley, Southeastern Nebraska and Northeastern Kansas Guidebook No. 11, Conservation and Survey Division. University of Nebraska, Lincoln. (58 pp.)
Mayer, J.H. Burr, G.S. Holliday, V.T. (2008). Comparisons and interpretations of charcoal and organic matter radiocarbon ages from buried soils in north-central Colorado, USA. Radiocarbon 50, 331346.
Muhs, D.R. Aleinikoff, J.N. Stafford, T.W. Jr. Kihl, R. Been, J. Mahan, S.A. Cowherd, S. (1999). Late Quaternary loess in northeastern Colorado: Part I–Age and paleoclimatic significance. Geological Society of America Bulletin 111, 18611875.
Muhs, D.R. Bettis, E.A. Aleinikoff, J.N. McGeehin, J.P. Beann, J. Skipp, G. Benton, R. (2008). Origin and paleoclimatic significance of late Quaternary loess in Nebraska: Evidence from stratigraphy, chronology, sedimentology, and geochemistry. Geological Society of America Bulletin 120, 13781407.
Murray, A.S. Wintle, A.G. (2000). Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.
Nordt, L.C. Boutton, T.W. Hallmark, C.T. Waters, M.R. (1994). Late Quaternary vegetation and climate changes in central Texas based on the isotopic composition of organic carbon. Quaternary Research 41, 109120.
Nordt, L.C. Boutton, T.W. Jacob, J.S. Mandel, R.D. (2002). C4 plant productivity and climate-CO2 variations in south-central Texas during the late quaternary. Quaternary Research 58, 182188.
Nordt, L. Von Fischer, J. Tieszen, L. (2007). Late Quaternary temperature record from buried soils of the North American Great Plains. Geology 35, 2 159162.
Olson, C.G. Nettleton, W.D. Porter, D.A. Brasher, B.R. (1997). Middle Holocene aeolian activity on the High Plains of west-central Kansas. The Holocene 7, 3 255261.
Olson, C.G. Porter, D.A. (2002). Isotopic and geomorphic evidence for Holocene climate, southwestern Kansas. Quaternary International 87, 2944.
Peel, M.C. Finlayson, B.L. McMahon, T.A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions 4, 2 439473.
Porter, D.A. (1997). Soil genesis and landscape evolution within the Cimarron Bend area, southwest Kansas. (Dissertation) Department of Agronomy, Kansas State University, Manhattan. (UMI Dissertation Services No. 9817174, Ann Arbor, MI.)
Prescott, J.R. Hutton, J.T. (1994). Cosmic ray contributions to dose rates for luminescence and ESR dating. Radiation Measurements 23, 497500.
Reed, E.C. Dreeszen, V.H. (1965). Revision of the classification of the Pleistocene deposits of Nebraska. Nebraska Geological Survey Bulletin 23, 65 p.
Reimer, P.J. Bard, E. Bayliss, A. Beck, J.W. Blackwell, P.G. Bronk Ramsey, C. Buck, C.E. Cheng, H. Edwards, R.L. Friedrich, M. Grootes, P.M. Guilderson, T.P. Haflidason, H. Hajdas, I. Hatte, C. Heaton, T.J. Hogg, A.G. Hughen, K.A. Kaiser, K.F. Kromer, B. Manning, S.W. Niu, M. Reimer, R.W. Richards, D.A. Scott, E.M. Southon, J.R. Turney, C.S.M. van der Plicht, J. (2013). IntCal13 and MARINE13 radiocarbon age calibration curves 0–50000 years cal BP. Radiocarbon 55, 4 18691887.
Rittenour, T.M. (2008). Luminescence dating of fluvial deposits: applications to geomorphic, palaeoseismic and archaeological research. Boreas 37, 613635.
Rittenour, T.M. Blum, M.D. Goble, R.J. (2007). Fluvial evolution of the lower Mississippi River valley during the last 100-kyr glacial cycle: Response to glaciation and sea-level change. Geological Society of America Bulletin 119, 586608.
Rittenour, T.M. Goble, R.J. Blum, M.D. (2005). Development of an OSL chronology for Late Pleistocene channel belts in the lower Mississippi valley, USA. Quaternary Science Reviews 24, 25392554.
Rousseau, D.-D. Kukla, G. (1994). Late Pleistocene climate record in the Eustis loess section, Nebraska, based on land snail assemblages and magnetic susceptibility. Quaternary Research 42, 176187.
Schoeneberger, P.J. Wysocki, D.A. Benham, E.C. Broderson, W.D. (2012). Field book for describing and sampling soils, Version 3 Natural resources conservation service. National Soil Survey Center, Lincoln, NE.
Schumm, S.A. (1977). The fluvial system. John Wiley, New York.
Schumm, S.A. (1993). River response to base level change: implications for sequence stratigraphy. The Journal of Geology 279–294,
Sionneau, T. Bout-Roumazeilles, V. Meunier, G. Kissel, C. Flower, B.P. Bory, A. Tribovillard, N. (2013). Atmospheric re-organization during Marine Isotope Stage 3 over the North American continent: sedimentological and mineralogical evidence from the Gulf of Mexico. Quaternary Science Reviews 81, 6273.
Smith, H.T.U. (1940). Geologic studies in southwestern Kansas. Kansas Geological Survey Bulletin 34, Kansas Geological Survey, Lawrence.
Soil Survey Staff, (1982). Procedure for collecting soil samples and methods of analysis for soil survey. Soil Survey Investigations Report 1 USDA-SCS, Washington, DC.
Souders, V.L. Kuzila, M.S. A report on the geology and radiocarbon ages of four superimposed horizons at a site in the Republican River valley, Franklin County Nebraska. Proceedings of the Nebraska Academy of Sciences 65, (1990).
Terri, J.A. Stowe, L.G. (1976). Climatic patterns and the distribution of C4 grasses in North America. Oecologia 23, 112.
Tripsanas, E.K. Bryant, W.R. Slowey, N.C. Bouma, A.H. Karageorgis, A.P. Berti, D. (2007). Sedimentological history of Bryant Canyon area, northwest Gulf of Mexico, during the last 135 kyr (Marine Isotope Stages 1–6): a proxy record of Mississippi River discharge. Palaeogeography, Palaeoclimatology, Palaeoecology 246, 137161.
Tucker, G.E. Arnold, L. Bras, R.L. Flores, H. Istanbulluoglu, E. Sólyom, P. (2006). Headwater channel dynamics in semiarid rangelands, Colorado high plains, USA. Geological Society of America Bulletin 118, 959974.
Van Meerbeeck, C.J. Renssen, H. Roche, D.M. (2009). How did Marine Isotope Stage 3 and Last Glacial Maximum climates differ? Perspectives from equilibrium simulations. Climate of the Past 5, 3351.
Voelker, A.H. (2002). Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database. Quaternary Science Reviews 21, 10 11851212.
von Fischer, J. Tieszen, L. Schimel, D. (2008). Climate controls on C3 and C4 productivity in North American grasslands from carbon isotope composition of soil organic matter. Global Change Biology 14, 11411155.
Wallinga, J. (2002). Optically stimulated luminescence dating of fluvial deposits: a review. Boreas 31, 4 303322.
Wells, P.V. Stewart, J.D. (1987). Cordilleran-boreal taiga and fauna on the Central Great Plains of North America, 14,000–18,000 years ago. American Midland Naturalist 118, 94106.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Quaternary Research
  • ISSN: 0033-5894
  • EISSN: 1096-0287
  • URL: /core/journals/quaternary-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Layzell et al. supplementary material
Figure S1

 PDF (396 KB)
396 KB
Supplementary materials

Layzell et al. supplementary material
Figure S2

 PDF (349 KB)
349 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed