Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-22T13:05:23.741Z Has data issue: false hasContentIssue false

Greenhouse gas emissions from selected Austrian dairy production systems—model calculations considering the effects of land use change

Published online by Cambridge University Press:  12 February 2010

S. Hörtenhuber*
Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Applied Life Sciences Vienna, Gregor-Mendel-Straße 33, A-1180Vienna, Austria. Research Institute of Organic Agriculture (FiBL) Austria, Seidengasse 33-35/13, A-1070Vienna, Austria.
T. Lindenthal
Research Institute of Organic Agriculture (FiBL) Austria, Seidengasse 33-35/13, A-1070Vienna, Austria.
B. Amon
Division of Agricultural Engineering, Department of Sustainable Agricultural Systems, University of Natural Resources and Applied Life Sciences Vienna, Peter Jordan Straße 82, A-1190Vienna, Austria.
T. Markut
Research Institute of Organic Agriculture (FiBL) Austria, Seidengasse 33-35/13, A-1070Vienna, Austria.
L. Kirner
Federal Institute of Agricultural Economics, Marxergasse 2, A-1030Vienna, Austria.
W. Zollitsch
Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Applied Life Sciences Vienna, Gregor-Mendel-Straße 33, A-1180Vienna, Austria.
*Corresponding author:


The aim of this study was to analyze various Austrian dairy production systems (PS) concerning their greenhouse gas emissions (GHGE) in a life-cycle chain, including effects of land-use change (LUC). Models of eight PS that differ, on the one hand, in their regional location (alpine, uplands and lowlands) and, on the other hand, in their production method (conventional versus organic, including traditional and recently emerging pasture-based dairy farming) were designed.

In general, the GHGE-reducing effect of a higher milk yield per cow and year in conventional dairy farming cannot compensate for the advantages of organic dairy production which requires lower inputs. This is shown both for GHGE per kg of milk and GHGE per ha and year of farmland. Especially when (imported) concentrates were fed, which had been grown on former forests or grassland, e.g. soybean meal and rapeseed cake, GHGE of conventional dairy farming rose due to the effects of LUC.

GHGE per kg milk varied from 0.90 to 1.17 kg CO2-eq for conventional PS, while organic PS on average emitted 11% less greenhouse gases (GHGs), the values ranging from 0.81 to 1.02 CO2-eq per kg milk. Within each production method, PS with a higher milk output generally showed better results for GHGE per kg of milk produced than PS with a lower milk output. Nevertheless the latter showed clearly better results for GHGE per ha of land used, ranging from 5.2 to 7.6 Mg CO2-eq per ha and year for conventional PS and from 4.2 to 6.2 Mg CO2-eq per ha and year for organic PS. The results of this study emphasize the importance of a complete life-cycle assessment in the evaluation of impacts that dairy PS have on the climate.

Research Papers
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1Gugele, B., Ritter, M., and Mareckova, K. 2002. Greenhouse gas emission trends in Europe, 1990–2000. Topic Report 7/2002. European Environment Agency, Copenhagen.Google Scholar
2UBA (Umweltbundesamt; Austrian Environment Agency). 2004. Siebenter Umweltkontrollbericht – 5.5 Landwirtschaftlich genutzte Lebensräume. Available at Web site (verified 23 November 2008; in German).Google Scholar
3Luick, R. 1998. Ecological and socio-economic implications of livestock-keeping systems on extensive grasslands in south-western Germany. Journal of Applied Ecology 35:979982.CrossRefGoogle Scholar
4Fehrenbach, H., Giegrich, J., Reinhardt, G., Schmitz, J., Sayer, U., Gretz, M., Seizinger, E., and Lanje, K. 2008. Criteria for a Sustainable Use of Bioenergy on a Global Scale. Report on behalf of the German Federal Environment Agency. Available at Web site (verified 25 September 2008).Google Scholar
5IPCC (Intergovernmental Panel on Climate Change). 2007. Climate Change 2007: Mitigation of Climate Change. (Working Groups I, II, III). Available at Web site (verified 11 June 2007).CrossRefGoogle Scholar
6Garnett, T. 2009. Livestock-related greenhouse gas emissions: impacts and options for policy makers. Environmental Science and Policy 12:491503.CrossRefGoogle Scholar
7Löthe, K., Fuchs, F., and Zeddies, J. 1997. Reduction of emissions in farming systems in Germany. In Adger, W.N., Pettenella, D., and Whitby, M. (eds). Climate-change Mitigation and European Land-use Policies. CAB International, London, UK. p. 159169.Google Scholar
8Thomassen, M.A., van Calker, K.J., Smits, M.C.J., Iepema, G.L., and de Boer, I.J.M. 2008. Life cycle assessment of conventional and organic milk production in the Netherlands. Agricultural Systems 96:95–107.CrossRefGoogle Scholar
9Williams, A.G., Audsley, E., and Sandars, D.L. 2006. Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities. In Main Report, Defra Research Project IS0205, Cranfield University and Defra. Available from Web site (verified 25 September 2008).Google Scholar
10Cederberg, C. and Mattson, B. 2000. Life cycle assessment of milk production – a comparison of conventional and organic farming. Journal of Cleaner Production 8:4960.CrossRefGoogle Scholar
11IPCC (Intergovernmental Panel on Climate Change). 2001. Climate Change 2001: The Scientific Background. Cambridge University Press, Cambridge, UK.Google Scholar
12Invekos (Integriertes Verwaltungs- und Kontrollsystem; IACS, Integrated Administration and Control System). 2009. Database, Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management, Vienna.Google Scholar
13Kirner, L. 2009. Vollweide in der Bio-Milchviehhaltung aus ökonomischer Sicht am Beispiel Österreichs. In Proceedings of 10. Wissenschaftstagung Ökologischer Landbau, Part 2. ETH-Zürich, Zürich, p. 250253 (in German).Google Scholar
14BMLFUW (Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft; Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management). 2006. Grüner Bericht 2006. Available from Web site (verified 2 April 2007; in German).Google Scholar
15Buchgraber, K. and Gindl, G. 2004. Zeitgemäße Grünlandbewirtschaftung. 2. Auflage. Leopold Stocker Verlag, Graz, Austria (in German).Google Scholar
16BMLFUW (Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft; Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management). 2008. Deckungsbeiträge und Daten für die Betriebsplanung 2008. BMLFUW, Vienna, Austria (in German).Google Scholar
17IPCC (Intergovernmental Panel on Climate Change). 2006. In Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., and Tanabe, K. (eds). Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme. IGES, Japan.Google Scholar
18Rahmann, G. and Böhm, H. 2005. Organic fodder production in intensive organic livestock production in Europe: recent scientific findings and the impact on the development of organic farming. In Rowlinson, et al. (eds). Integrating Livestock–Crop Systems to Meet the Challenges of Globalisation. Proceedings of the AHAT/BSAS International Conference, 14–18 November 2005 in Khon Kaen, Thailand. Volume 1. British Society of Animal Science, Penicuik, UK. p. 471485.Google Scholar
19DLG (Deutsche Landwirtschafts-Gesellschaft). 1997. DLG- Futterwerttabelle für Wiederkäuer. 7. erweiterte und überarbeitete Auflage. DLG-Verlag, Frankfurt/Main, Germany (in German).Google Scholar
20Buchgraber, K., Gruber, L., Resch, R., and Wiedner, G. 1997. ÖAG-Futterwerttabelle für Grundfutter im Alpenraum. In ÖAG- Sonderbeilage – Der Fortschrittliche Landwirt, 4/1997 (in German).Google Scholar
21Resch, R., Guggenberger, T., Wiedner, G., Kasal, A., Wurm, K., Gruber, L., Ringdorfer, F., and Buchgraber, K. 2006. Futterwerttabellen im Jahr 2006 für das Grundfutter im Alpenraum. Available from Web site (verified 22 May 2008; in German).Google Scholar
22Amon, B., Fröhlich, M., Weißensteiner, R., Zablatnik, B., and Amon, T. 2007. Tierhaltung und Wirtschaftsdüngermanagement in Österreich (TIHALO). Final Report Project No. 1441 on behalf of the Federal Ministry of Agriculture, Forestry, Environment and Water Management, Vienna, Austria (in German).Google Scholar
23Amon, B., Fröhlich, M., Weißensteiner, R., Zablatnik, B., and Amon, T. 2007. Database ‘TIHALO’, unpublished data.Google Scholar
24Van Es, A.J.H. 1975. Feed evaluation for dairy cows. Livestock Production Science 2:95–101.CrossRefGoogle Scholar
25GfE (Gesellschaft für Ernährungsphysiologie). 2001. Empfehlungen zu Energie- und Nährstoffversorgung der Milchkühe und Aufzuchtrinder. DLG-Verlag, Frankfurt/Main, Germany (in German).Google Scholar
26Statistics Austria. 2005. In BMGF (Bundesministerium für Gesundheit und Frauen), 2006: Herkunftsidentiät von Raps und Rapsprodukten am Markt in Österreich und Verarbeitung in dezentralen Ölmühlen. Vienna, Austria (in German).Google Scholar
27AGES (Agentur für Gesundheit und Ernährungssicherheit; Austrian Agency for Health and Food Safety). 2005. Machbarkeitsstudie für Auslobung “gentechnikfrei” und Vermeidung von GVO bei Lebensmittel aus tierischer Erzeugung. Vienna, Austria (in German).Google Scholar
28Zuchtdata (Association of Austrian Cattle Breeders). 2007. Annual Report 2006. Available from Web site (verified 15 July 2007; in German).Google Scholar
29Kirchgeßner, M., Windisch, W., and Müller, H.L. 1995. Nutritional factors for the quantification of methane production. In Engelhardt, W.V., Leonhard-Marek, S., Breves, G., and Giesecke, D. (eds). Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction. Proceedings of the VIII International Symposium on Ruminant Physiology. p. 333348.Google Scholar
30Öhlinger, C., Dell, G., and Egger, C. 2007. Stromsparen in der Landwirtschaft. Manual, Energy Agency of Upper Austria. Available from Web site (verified 20 January 2008; in German).Google Scholar
31Ecoinvent. 2007. Ecoinvent Data v2.0 Final Reports Ecoinvent 2000, No. 1–25, Swiss Centre for Life Cycle Inventories, Dübendorf.Google Scholar
32ÖKL (Österreichisches Kuratorium für Landtechnik und Landentwicklung; Austrian Council for Agricultural Engineering and Rural Development). 2005. ÖKL- Richtwerte für die Maschinenselbstkosten 2005. ÖKL, Vienna, Austria (in German).Google Scholar
33Wilting, H.C., Benders, R.M.J., Kok, R., Biesiot, W., and Moll, H.C. 2004. EAP – Energy Analysis Program. 2nd revised ed.IVEM Research Report 98, Groningen, The Netherlands.Google Scholar
34Patyk, A. and Reinhardt, G.A. 1997. Düngemittel-, Energie und Stoffstrombilanzen. Vieweg-Verlag, Braunschweig/Wiesbaden, Germany (in German).CrossRefGoogle Scholar
35Biskupek, B., Patyk, A., and Radtke, J. 1997. Daten zu Pflanzenproduktion. In Kaltschmitt, M. and Reinhardt, G.A. (eds). Nachwachsende Energieträger. Vieweg-Verlag, Braunschweig/Wiesbaden, Germany (in German).Google Scholar
36Gruber, L. and Steinwidder, A. 1996. Einfluß der Fütterung auf die Stickstoff- und Phosphorausscheidung landwirtschaftlicher Nutztiere – Modellkalkulationen auf Basis einer Literaturübersicht. In Die Bodenkultur – Austrian Journal of Agricultural Research, 47(4). WUV-Universitätsverlag, Vienna, Austria (in German).Google Scholar
37Schechtner, G. 1991. Wirtschaftsdünger – Richtige Gewinnung und Anwendung, Sonderausgabe des Förderungsdienst 1991. Bundesministerium für Land- und Forstwirtschaft, Vienna, Austria (in German).Google Scholar
38Pötsch, E.M. 2006. Österreichisches Aktionsprogramm zur Umsetzung der EU-Nitratrichtlinie: Aktualisierung der N-Ausscheidungsrate für landwirtschaftliche Nutztiere – Konsequenzen für die Praxis. Available from Web site (verified 21 October 2007; in German).Google Scholar
39EEA (European Environment Agency). 2008. Land cover changes 1990–2000. Available from Web site (verified 8 October 2008).Google Scholar
40Küstermann, B., Kainz, M., and Hülsbergen, K.-J. 2007. Modelling carbon cycles and estimation of greenhouse gas emissions from organic and conventional farming systems. Renewable Agriculture and Food Systems 23:116.Google Scholar
41Fliessbach, A., Oberholzer, H.-R., Gunst, L., and Mäder, P. 2007. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agriculture Ecosystems and Environment 118:273284.CrossRefGoogle Scholar
42Soussana, J.-F., Loiseau, P., Vuichard, N., Ceschia, E., Balesdent, J., Chevallier, T., and Arrouays, D. 2004. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use and Management 20:219230.CrossRefGoogle Scholar
43Kirchgeßner, M. 2004. Tierernährung. 11. Überbearbeitete Auflage. DLG- Verlag, Frankfurt/Main, Germany (in German).Google Scholar
44Fürst, C. 2006. Züchterische Strategien für die Bio-Rinderzucht. In Bericht über die österreichische Fachtagung für Biologische Landwirtschaft 2006. Available from Web site (verified 15 December 2007; in German).Google Scholar
45Hindrichsen, I.K., Wettstein, H.-R., Machmüller, A., Jörg, B., and Kreuzer, M. 2005. Effect of the carbohydrate composition of feed concentrates on methane emission from dairy cows and their slurry. Environmental Monitoring and Assessment 107:329350.CrossRefGoogle ScholarPubMed
46Lehuger, S., Gabrielle, B., and Gagnaire, N. 2009. Environmental impact of the substitution of imported soybean meal with locally produced rapeseed meal in dairy cow feed. Journal of Cleaner Production 17:616624.CrossRefGoogle Scholar
47Dalgaard, R., Schmidt, J., Halberg, N., Christensen, P., Thrane, M., and Pengue, W.A. 2008. LCA of Soybean Meal. International Journal of LCA 13(3):240254.CrossRefGoogle Scholar
48Renewable Fuels Agency (Department for Transport). 2008. Carbon and sustainability reporting with the Renewable Transport Fuels Obligation – Technical Guidance (Part 2). Renewable Fuels Agency (Department for Transport), London, UK.Google Scholar
49Smaling, E.M.A., Roscoe, R., Lesschen, J.P., Bouwman, A.F., and Comunello, E. 2008. From forest to waste: Assessment of the Brazilian soybean chain, using nitrogen as marker. Agriculture, Ecosystems and Environment 128:185197.CrossRefGoogle Scholar
50Weiske, A., Vabitsch, A., Olesen, J.E., Schelde, K., Michel, J., Friedrich, R., and Kaltschmitt, M. 2006. Mitigation of greenhouse gas emissions in European conventional and organic dairy farming. Agriculture, Ecosystems and Environment 112:221232.CrossRefGoogle Scholar
51Olesen, J.E., Schelde, K., Weiske, A., Weisbjerg, M.R., Asberg, W.A.H., and Djurhuus, J. 2006. Modelling greenhouse gas emissions from European conventional and organic dairy farms. Agriculture, Ecosystems and Environment 112:207220.CrossRefGoogle Scholar
52IPCC (Intergovernmental Panel on Climate Change). 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. OECD, Paris.Google Scholar
53Fleischer, P., Metzner, M., Beyerbach, M., Hoedemaker, M., and Klee, W. 2001. The relationship between milk yield and the incidence of some diseases in dairy cows. Journal of Dairy Science 84:20252035.CrossRefGoogle ScholarPubMed
54Van Soest, P. 1994. Nutritional Ecology of the Ruminant. Cornell University Press, Ithaca, NY, USA.CrossRefGoogle Scholar
55Weyermann, I., Kampmann, D., Peter, M., Herzog, F., and Lüscher, A. 2006. Mountain meadows have a high ecological quality. Agrarforschung 13(04):156161.Google Scholar
56Kampmann, D., Herzog, F., Jeanneret, Ph., Konold, W., Peter, M., Walter, T., Wildi, O., and Lüscher, A. 2008. Mountain grassland biodiversity: impact of site conditions versus management type. Journal for Nature Conservation 16:1225.CrossRefGoogle Scholar
57Knaus, W. 2008. Dairy cows trapped between performance demands and adaptability. Journal of the Science of Food and Agriculture 89:11071114.CrossRefGoogle Scholar
58Tuyttens, F.A.M. 2005. The importance of straw for pig and cattle welfare: a review. Applied Animal Behaviour Science 92:261282.CrossRefGoogle Scholar
59Amon, B. 2006. Emissionen umwelt- und klimarelevanter Gase aus der landwirtschaftlichen Tierhaltung. Habilitation thesis, Universityof Natural Resources and Applied Life Sciences, Vienna, Austria (in German).Google Scholar
60KTBL (Kuratorium für Technik und Bauwesen in der Landwirtschaft; German Association for Technology and Structures in Agriculture). 2005. Gasausbeute in Landwirtschaftlichen Biogasanlagen. KTBL-Heft 50. Darmstadt, Germany (in German).Google Scholar
61Amon, B., Kryvoruchko, V., Amon, T., and Zechmeister-Boltenstern, S. 2006. Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agriculture, Ecosystems and Environment 112:153162.CrossRefGoogle Scholar
62UN-Energy. 2007. Sustainable Bioenergy. A Framework for Decision Makers. Available from Web site (verified 15 March 2009).Google Scholar
63The Royal Society. 2008. Sustainable Biofuels: Prospects and Challenges. The Clyvedon Press. Available from Web site (verified 25 January 2008).Google Scholar
64Crutzen, P.J., Mosier, A.R., Smith, K.A., and Winiwarter, W. 2007. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Available from Web site (verified 21 January 2008).CrossRefGoogle Scholar