Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-25T06:27:19.270Z Has data issue: false hasContentIssue false

Response to farmer mass selection in early generation progeny of bread wheat landrace crosses

Published online by Cambridge University Press:  26 September 2013

Pierre Rivière*
UMR Génétique Végétale, INRA—Université Paris-Sud—CNRS, Ferme du Moulon, F-91190 Gif-sur-Yvette, France.
Isabelle Goldringer
UMR Génétique Végétale, INRA—Université Paris-Sud—CNRS, Ferme du Moulon, F-91190 Gif-sur-Yvette, France.
Jean-François Berthellot
Réseau Semences Paysannes, 3, avenue de la gare, F-47190 Aiguillon, France.
Nathalie Galic
UMR Génétique Végétale, INRA—Université Paris-Sud—CNRS, Ferme du Moulon, F-91190 Gif-sur-Yvette, France.
Sophie Pin
UMR Génétique Végétale, INRA—Université Paris-Sud—CNRS, Ferme du Moulon, F-91190 Gif-sur-Yvette, France.
Patrick De Kochko
Réseau Semences Paysannes, 3, avenue de la gare, F-47190 Aiguillon, France.
Julie C. Dawson
UMR Génétique Végétale, INRA—Université Paris-Sud—CNRS, Ferme du Moulon, F-91190 Gif-sur-Yvette, France.
*Corresponding author:


A participatory plant breeding (PPB) program involving the French farmers' association ‘Réseau Semences Paysannes’ and the French National Agricultural Research Institute (INRA) at Le Moulon was initiated in 2005. In the process of designing the breeding scheme, we evaluated the impact of farmer selection at an early stage (F2) on bread wheat cross progeny populations. The objectives were to characterize the effect of farmer selection, to evaluate the impact of farmer selection on intra-varietal diversity, to provide farmers with relevant information that they can use to improve their selection practices. Early selection was found efficient for some traits and for some of the 35 F2-derived F3 families. For traits of interest such as thousand kernel weight or grain weight per spike, when the response was significant, it was always positive. For most of the traits studied, the among-family genetic variance increased after selection while the average within-family genetic variance decreased. This study provides the first quantitative results for this PPB program and information that will help optimize it in the future.

Research Papers
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1 Agence Bio. La réglementation en agriculture biologique: principes et spécificités. 2010. [Internet]. [cited 2 August 2010]. Available at Web site (accessed September 13, 2013).Google Scholar
2 Wolfe, M., Baresel, J., Desclaux, D., Goldringer, I., Hoad, S., Kovacs, G., Loschenberger, F., Miedaner, T., Østergard, H., and Lammerts van Bueren, E.T. 2008. Developments in breeding cereals for organic agriculture. Euphytica 163:323346.CrossRefGoogle Scholar
3 Morris, M.L. and Bellon, M.R. 2004. Participatory plant breeding research: Opportunities and challenges for the international crop improvement system. Euphytica 136:2135.Google Scholar
4 Alvarez, N., Garine, E., Khasah, C., Dounias, E., Hossaert-McKey, M., and McKey, D. 2005. Farmers' practices, metapopulation dynamics, and conservation of agricultural biodiversity on-farm: A case study of sorghum among the Duupa in sub-Sahelian Cameroon. Biological Conservation 121:533543.Google Scholar
5 Dawson, J., Murphy, K., and Jones, S. 2008. Decentralized selection and participatory approaches in plant breeding for low-input systems. Euphytica 160:143154.Google Scholar
6 Ceccarelli, S. and Grando, S. 2007. Decentralized-participatory plant breeding: An example of demand driven research. Euphytica 155:349360.Google Scholar
7 Smith, M.E., Castillo, G.F., and Gomez, F. 2001. Participatory plant breeding with maize in Mexico and Honduras. Euphytica 122:551565.Google Scholar
8 Jarvis, D.I., Hodgkin, T., Sthapit, B.R., Fadda, C., and Lopez-Noriega, I. 2011. An heuristic framework for identifying multiple ways of supporting the conservation and use of traditional crop varieties within the agricultural production system. Critical Reviews in Plant Sciences 30:125176.Google Scholar
9 Ceccarelli, S., Grando, S., Bailey, E., Amri, A., El-Felah, M., Nassif, F., Rezgui, S., and Yahyaoui, A. 2001. Farmer participation in barley breeding in Syria, Morocco and Tunisia. Euphytica 122:521536.Google Scholar
10 Patto, M.C.V., Moreira, P.M., Almeida, N., Satovic, Z., and Pego, S. 2008. Genetic diversity evolution through participatory maize breeding in Portugal. Euphytica 161:283291.Google Scholar
11 Desclaux, D., Nolot, J.M., Chiffoleau, Y., Leclerc, C., and Gozé, E. 2008. Changes in the concept of genotype×environment interactions to fit agriculture diversification and decentralized participatory plant breeding: Pluridisciplinary point of view. Euphytica 163:533546.CrossRefGoogle Scholar
12 Ceccarelli, S. and Grando, S. 2009. Participatory plant breeding in cereals. In Carena, M.J. (ed.). Cereals. Springer, New York. p. 395414.Google Scholar
13 Halewood, M., Deupmann, P., Sthapit, B.R., Vernoy, R., and Ceccarelli, S. 2009. Participatory Plant Breeding to Promote Farmer's Rights. Bioversity International, Rome, Italy.Google Scholar
14 Vom Brocke, K., Trouche, G., Weltzien, E., Barro-Kondombo, C.P., Gozé, E., and Chantereau, J. 2010. Participatory variety development for sorghum in Burkina Faso: Farmers' selection and farmers' criteria. Field Crops Research 119:183194.Google Scholar
15 Almekinders, C., Centeno, J.M., Torrez, R.H., Olivera, L.S.M., Suarez, J.M.G., and Carrasco, J.G. 2006. Experiencias y aprendizajes del desarrollo de variedades de frijol de manera participativa en el norte de Nicaragua. Agronomía Mesoamericana 17:327346.CrossRefGoogle Scholar
16 Sperling, L., Loevinsohn, M., and Ntabomvura, B. 1993. Rethinking the farmer's role in plant breeding: Local bean experts and on-station selection in Rwanda. Experimental Agriculture 29:509519.Google Scholar
17 McElhinny, E., Peralta, E., Mazón, N., Danial, D.L., Thiele, G., and Lindhout, P. 2007. Aspects of participatory plant breeding for quinoa in marginal areas of Ecuador. Euphytica 153:373384.CrossRefGoogle Scholar
18 Bachmann, L., Cruzada, E., and Wright, S. 2009. Food Security and Farmer Empowerment. Magsasaka at Siyentista Tungo sa Pag-unlad ng Agrikultura.Google Scholar
19 Osman, A.M., Almekinders, C.J.M., Struik, P.C., and van Bueren, E.T.L. 2008. Can conventional breeding programmes provide onion varieties that are suitable for organic farming in the Netherlands? Euphytica 163:511522.Google Scholar
20 Chable, V., Conseil, M., Serpolay, E., and Le Lagadec, F. 2008. Organic varieties for cauliflowers and cabbages in Brittany: From genetic resources to participatory plant breeding. Euphytica 164:521529.Google Scholar
21 Ghaouti, L., Vogt-Kaute, W., and Link, W. 2008. Development of locally-adapted faba bean cultivars for organic conditions in Germany through a participatory breeding approach. Euphytica 162:257268.CrossRefGoogle Scholar
22 Mendes Moreira, P.M.R., Pêgo, S.E., Vaz Patto, C., and Hallauer, A.R. 2008. Comparison of selection methods on ‘Pigarro’, a Portuguese improved maize population with fasciation expression. Euphytica 163:481499.CrossRefGoogle Scholar
23 Dawson, J., Rivière, P., Berthellot, J.F., Mercier, F., De Kochko, P., Galic, N., Pin, S., Serpolay, E., Thomas, M., Giuliano, S., and Goldringer, I. 2011. Collaborative plant breeding for organic agricultural systems in developed countries. Sustainability 3:12061223.Google Scholar
24 Thomas, M., Dawson, J.C., Goldringer, I., and Bonneuil, C. 2011. Seed exchanges, a key to analyze crop diversity dynamics in farmer-led on-farm conservation. Genetic Resources and Crop Evolution 58:321338.Google Scholar
25 Réseau Semences Paysannes. 2008. Voyage autour des blés paysans. Témoignages.Google Scholar
26 Enjalbert, J., Dawson, J.C., Paillard, S., Rhoné, B., Rousselle, Y., Thomas, M., and Goldringer, I. 2011. Dynamic management of crop diversity: From an experimental approach to on-farm conservation. Comptes Rendus Biologies 334:458468.Google Scholar
27 Thomas, M., Demeulenaere, E., Dawson, J.C., Khan, A.R., Galic, N., Jouanne-Pin, S., Remoue, C., Bonneuil, C., and Goldringer, I. 2012. On-farm dynamic management of genetic diversity: The impact of seed diffusions and seed saving practices on a population-variety of bread wheat. Evolutionary Applications 5:779795.Google Scholar
28 Bonneuil, C. and Demeulenaere, E. 2007. Vers une génétique de pair à pair? L’émergence de la sélection participative. In Charvolin, F., Micoud, A., and Nyhart, L.K. (Eds). Des sciences citoyennes? La question de l'amateur dans les sciences naturalistes. Ed. de l'Aube, La Tour d'Aigues, France. p. 122147.Google Scholar
29 Goldringer, I., Enjalbert, J., David, J., Paillard, S., Pham, J.L., and Brabant, P. 2001. Dynamic management of genetic resources: A 13 year experiment on wheat. In Cooper, H.D., Spillane, C., and Hodgkin, T. (eds). Broadening the Genetic Base of Crop Production. IPGRI/FAO, Rome, Italy. p. 245260.Google Scholar
30 Newton, A.C., Akar, T., Baresel, J.P., Bebeli, P.J., Bettencourt, E., Bladenopoulos, K.V., Czembor, J.H., Fasoula, D.A., Katsiotis, A., Koutis, K., Koutsika-Sotiriou, M., Kovacs, G., Larsson, H., Pinheiro de Carvalho, M.A.A., Rubiales, D., Russell, J.R., dos Santos, T.M.M., and Vaz Patto, M.C. 2010. Cereal landraces for sustainable agriculture. A review. Agronomy for Sustainable Development 30:237269.Google Scholar
31 Hajjar, R., Jarvis, D.I., and Gemmill-Herren, B. 2007. The utility of crop genetic diversity in maintaining ecosystem services. Agriculture, Ecosystems and Environment 123:261270.Google Scholar
32 Wolfe, M.S. 2000. Crop strength through diversity. Nature 406:681682.Google Scholar
33 Finckh, M.R., Gacek, E.S., Goyeau, H., Lannou, C., Merz, U., Mundt, C.C., Munk, L., Nadziak, J., Newton, A.C., de Vallavieille-Pope, C., and Wolfe, M.S. 2000. Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie 20:813837.Google Scholar
34 Zhu, Y., Chen, H., Fan, J., Wang, Y., Li, Y., Chen, J., Fan, J., Yang, S., Hu, L., Leung, H., Mew, T.W., Teng, P.S., Wang, Z., and Mundt, C.C. 2000. Genetic diversity and disease control in rice. Nature 406:718722.Google Scholar
35 Chateil, C., Goldringer, I., Tarallo, L., Kerbiriou, C., Le Viol, I., Ponge, J.-F., Salmon, S., Gachet, S., and Porcher, E. 2013. Crop genetic diversity benefits farmland biodiversity in cultivated fields. Agriculture, Ecosystems and Environment 171:2532.Google Scholar
36 Tooker, J.F. and Frank, S.D. 2012. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. Journal of Applied Ecology 49:974985.Google Scholar
37 Mille, B., Fraj, M., Monod, H., and De Vallavieille-Pope, C. 2006. Assessing four-way mixtures of winter wheat cultivars from the performances of their two-way and individual components. European Journal of Plant Pathology 114:163173.Google Scholar
38 Louette, D. and Smale, M. 2000. Farmers' seed selection practices and traditional maize varieties in Cuzalapa, Mexico. Euphytica 113:2541.Google Scholar
39 Lançon, J., Pichaut, J.P., Djaboutou, M., Lewicki-Dhainaut, S., Viot, C., and Lacape, J.M. 2008. Use of molecular markers in participatory plant breeding: Assessing the genetic variability in cotton populations bred by farmers. Annals of Applied Biology 152:113119.Google Scholar
40 Pujol, B., David, P., and McKey, D. 2005. Microevolution in agricultural environments: How a traditional Amerindian farming practice favours heterozygosity in cassava (Manihot esculenta Crantz, Euphorbiaceae). Ecology Letters 8:138147.Google Scholar
41 Joshi, K.D. and Witcombe, J.R. 2003. The impact of participatory plant breeding (PPB) on landrace diversity: A case study for high-altitude rice in Nepal. Euphytica 134:117125.Google Scholar
42 Ceccarelli, S., Grando, S., Tutwiler, R., Baha, J., Martini, A.M., Salahieh, H., Goodchild, A., and Michael, M. 2000. A methodological study on participatory barley breeding I. Selection phase. Euphytica 111:91104.Google Scholar
43 SAS. SAS Institute Incorporated. 2008. SAS/STAT User's Guide. SAS Institute, Inc., Cary, NC.Google Scholar
44 R Development Core Team. 2010. R: A Language and Environment for Statistical Computing. [Internet]. R Foundation for Statistical Computing, Vienna, Austria. Available at web site (accessed September 13, 2013).Google Scholar
45 Bassett, M., Allan, R.E., and Rubenthaler, G.L. 1989. Genotype × environment interactions on soft white winter wheat quality. Agronomy Journal 81:955960.CrossRefGoogle Scholar
46 Herndl, M., White, J.W., Graeff, S., and Claupein, W. 2008. The impact of vernalization requirement, photoperiod sensitivity and earliness per se on grain protein content of bread wheat (Triticum aestivum L.). Euphytica 163:309320.Google Scholar
47 Murphy, K., Lammer, D., Lyon, S., Carter, B., and Jones, S.S. 2005. Breeding for organic and low-input farming systems: An evolutionary-participatory breeding method for inbred cereal grains. Renewable Agriculture and Food Systems 20:4855.Google Scholar
48 Gyawali, S., Sunwar, S., Subedi, M., Tripathi, M., Joshi, K.D., and Witcombe, J.R. 2007. Collaborative breeding with farmers can be effective. Field Crops Research 101:8895.Google Scholar
49 Virk, D.S., Chakraborty, M., Ghosh, J., Prasad, S.C., and Witcombe, J.R. 2005. Increasing the client orientation of maize breeding using farmer participation in Eastern India. Experimental Agriculture 41:413426.Google Scholar
50 Blum, A. 1998. Improving wheat grain filling under stress by stem reserve mobilisation. Euphytica 100:7783.Google Scholar
51 Storup, B. and De Kochko, P. 2011. Suivi d'une expérience de sélection participative en cours l'exemple du projet européen SOLIBAM. [Internet]. [cited 26 July 2013]. Available at Web site (accessed September 13, 2013).Google Scholar
Supplementary material: File

Riviere Supplementary Material

Supplementary Materials

Download Riviere Supplementary Material(File)
File 70.7 KB