Skip to main content
×
×
Home

No-till snap bean performance and weed response following rye and vetch cover crops

  • Rick A. Boydston (a1) and Martin M. Williams (a2)
Abstract

Fall-planted cover crops offer many benefits including weed suppressive residues in spring sown crops when controlled and left on the soil surface. However, vegetable growers have been slow to adopt direct-seeding (no-till) into cover crop residues. Field studies were conducted in 2009 and 2010 near Paterson, WA and Urbana, IL to evaluate mortality of rye and common vetch (WA) hairy vetch (IL) cover crops, weed density and biomass, and snap bean growth and yield following four cover crop control methods utilizing a roller–crimper. Rye had higher mortality than common and hairy vetch by roller-crimping, and carfentrazone applied after roller crimping only slightly increased vetch mortality. Heavy residues of rye and escaped vetch were difficult to plant into, often resulting in lower snap bean populations. Rye and hairy vetch residues suppressed final weed biomass, while common vetch reduced weed biomass 1 of 2 years. Escaped plants of both vetch species became a weed. Snap bean yields were inconsistent and often lower following cover crops compared with a fallow treatment. Being able to completely control cover crops and to plant, manage escaped weeds and mechanically harvest in the presence of heavy residues are challenges that deter vegetable growers from readily adopting these systems.

Copyright
Corresponding author
*Corresponding author: rick.boydston@ars.usda.gov
References
Hide All
Abdul-Baki, A.A. and Teasdale, J.R. 1997. Snap bean production in conventional tillage and in no-till hairy vetch mulch. HortScience 32:11911193.
Abdul-Baki, A.A., Teasdale, J.R., Korcak, R.F., Chitwood, D.J., and Huettel, R.N. 1996. Fresh-market tomato production in a low-input alternative system using cover-crop mulch. Journal of the American Society of Horticultural Science 31:6569.
Ashford, D.L. and Reeves, D.W. 2003. Use of a mechanical roller–crimper as an alternative kill method for cover crops. American Journal of Alternative Agriculture 18:3745.
Blackshaw, R.E. and Molnar, L.J. 2008. Integration of conservation tillage and herbicides for sustainable dry bean production. Weed Technology 22:168176.
Bottenberg, H., Masiunas, J., Eastman, C., and Eastburn, D.M. 1997. The impact of rye cover crops on weeds, insects, and diseases in snap bean cropping systems. Journal of Sustainable Agriculture 9:131155.
Canali, S., Campanelli, G., Ciaccia, C., Leteo, F., Testani, E., and Montemurro, F. 2013. Conservation tillage strategy based on the roller crimper technology for weed control in Mediterranean vegetable organic cropping systems. European Journal of Agronomy 50:1118.
Carr, P.M., Anderson, R.L., Lawley, Y.E., Miller, P.R., and Zwinger, S.F. 2012. Organic zero-till in the northern US great plains region: opportunities and obstacles. Renewable Agriculture and Food Systems 27:1220.
Carr, P.M., Gramig, G.G., and Liebig, M.A. 2013. Impacts of organic zero tillage systems on crops, weeds, and soil quality. Sustainability 5:31723201.
Creamer, N.G. and Dabney, S.M. 2002. Killing cover crops mechanically: review of recent literature and assessment of new research results. American Journal of Alternative Agriculture 17:3240.
Curran, W.S., Wallace, J.M., Mirsky, S., and Crockett, B. 2015. Effectiveness of herbicides for control of hairy vetch (Vicia villosa) in winter wheat. Weed Technology 29:509518.
Davis, A.S. 2010. Cover-crop roller-crimper contributes to weed management in no-till soybean. Weed Science 58:300309.
Delate, L., Cwach, D., and Chase, C. 2012. Organic no-till system effects on organic soybean, corn, and tomato production and economic performance in Iowa. Renewable Agriculture and Food Systems 27:4959.
Hayden, Z.D., Ngouajio, M., and Brainard, D.C. 2014. Rye–vetch mixture proportion tradeoffs: cover crop productivity, nitrogen accumulation, and weed suppression. Agronomy Journal 106:904914.
Hoyt, G.D., Monk, D.W., and Monaco, T.J. 1994. Conservation tillage for vegetable production. HortTechnology 4:129135.
Knavel, D.E. and Heron, J.W. 1986. Response of vegetable crops to nitrogen rates in tillage systems with and without vetch and rye grass. Journal of the American Society of Horticultural Science 111:502507.
Kornecki, T.S., Arriaga, F.J., and Price, A.J. 2012. Roller type and operating speed effects on rye termination rates, soil moisture, and yield of sweet corn in a no-till system. HortScience 7:217223.
Leavitt, M.J., Sheaffer, C.C., and Wyse, D.L. 2011. Rolled winter rye and hairy vetch cover crops lower weed density but reduce vegetable yields in no-tillage organic production. HortScience 46:387395.
Luna, J.M., Mitchell, J., and Shrestha, A. 2012. Conservation tillage for organic agriculture: evolution toward a hybrid system. Renewable Agriculture and Food Systems 27:2130.
Mirsky, S., Curran, W.S., Mortensen, D.A., Ryan, M.R., and Shumway, D. 2009. Control of cereal rye with a roller/crimper as influenced by cover crop phenology. Agronomy Journal 101:15891596.
Mirsky, S.B., Ryan, M.R., Teasdale, J.R., Curran, W.S., Reberg-Horton, C.S., Spargo, J.T., Wells, M.S., Keene, C.L., and Moyer, J.W. 2013. Overcoming weed management challenges in cover crop-based organic rotational no-till soybean production in the Eastern United States. Weed Technology 27:193203.
Mischler, R.A., Curran, W.S., Duiker, S.W., and Hyde, J. 2010a. Rolling a rye cover crop for weed suppression in no-till soybeans. Weed Technology 24:253261.
Mischler, R.A., Duiker, S.W., Curran, W.S., and Wilson, D. 2010b. Hairy vetch management for no-till organic corn production. Agronomy Journal 102:355362.
Mohler, C.L. and Teasdale, J.R. 1993. Response of weed emergence to rate of Vicia villosa Roth and Secale cereal L. residue. Weed Research 33:487499.
Morse, R. 1999. No-till vegetable production-Its time is now. HortTechnology 9:373379.
Mulvaney, M., Price, A., and Wood, C.W. 2011. Cover crop residue and organic mulches provide weed control during limited-input no-till collard production. Journal of Sustainable Agriculture 35:312328.
Mwaja, V.N., Masiunas, J.B., and Eastman, C.E. 1996. Rye (Secale cereal L.) and hairy vetch (Vicia villosa Roth) intercrop management in fresh-market vegetables. Journal of the American Society of Horticultural Science 121:586591.
National Agricultural Statistics Service (NASS), United States Department of Agriculture 2015. Vegetables. ISSN:1931-2857. usda.mannlib.cornell.edu/usda/nass/vege//2010s/2015/Vege-09-04-2015.pdf (accessed November 2, 2016).
Peigne, J., Ball, B.C., Roger-Estrade, J., and David, C. 2007. Is conservation tillage suitable for organic farming? A review. Soil Use and Management 23:129144.
Rice, P.J., McConnell, L.L., Heighton, L.P., Sadeghi, A.M., Isensee, A.R., Teasdale, J.R., Abdul-Baki, A.A., Harman-Fetcho, J.A., and Hapeman, C.J. 2001. Runoff loss of pesticides and soil: a comparison between vegetative mulch and plastic mulch in vegetable production systems. Journal of Environmental Quality 30:18081821.
Rutledge, A.D. 1999. Experiences with conservation tillage vegetables in Tennessee. HortTechnology 9:366372.
Sainju, U.M., Whitehead, W.F., and Singh, B.P. 2005. Biculture legume–cereal cover crops for enhanced biomass yield and carbon and nitrogen. Agronomy Journal 97:14031412.
Shite, R.H. and Worsham, D. 1990. Control of legume cover crops in no-till corn (Zea mays) and Cotton (Gossypium hirsutum). Weed Technology 4:5762.
Skarphol, B.J., Corey, K.A., and Meisinger, J.J. 1987. Response of snap beans to tillage and cover crop combinations. Journal of the American Society of Horticultural Science 112:936941.
Statistical Analysis System (SAS) 2014. Version 9.4. SAS User's Guide. Statistical Analysis Systems Institute, Cary, NC.
Teasdale, J.R., Beste, C.E., and Potts, W.E. 1991. Response of weeds to tillage and cover crop residue. Weed Science 39:195199.
Teasdale, J.R., Brandsaeter, L.O., Calegari, A., and Skora Neto, F. 2007. Cover crops and weed management. In Upadhyaya, M.K. and Blackshaw, R.E. (eds.). Non-Chemical Weed Management. CAB International, Wallingford, UK. p. 4964.
Vollmer, E.R., Creamer, N., Reberg-Horton, C., and Hoyt, G. 2010. Evaluation cover crop mulches for no-till organic production of onions. HortScience 45:6170.
Wayman, S., Cogger, C., Benedict, C., Burke, I., Collins, D., and Bary, A. 2014. The influence of cover crop variety, termination timing and termination method on mulch, weed cover and soil nitrate in reduced-tillage organic systems. Renewable Agriculture and Food Systems. Available on CJO2014. doi: 10.1017/S1742170514000246.
Wells, M.S., Brinton, C.M., and Reberg-Horton, S.C. 2015. Weed suppression and soybean yield in a no-till cover-crop mulched system as influenced by six rye cultivars. Renewable Agriculture and Food Systems, Available on CJO2015. doi: 10.1017/S1742170515000344.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Renewable Agriculture and Food Systems
  • ISSN: 1742-1705
  • EISSN: 1742-1713
  • URL: /core/journals/renewable-agriculture-and-food-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 4
Total number of PDF views: 57 *
Loading metrics...

Abstract views

Total abstract views: 403 *
Loading metrics...

* Views captured on Cambridge Core between 5th December 2016 - 23rd June 2018. This data will be updated every 24 hours.