Skip to main content Accessibility help
×
Home

Article contents

Hybridization in a Commercial Production Field between Imidazolinone-Resistant Winter Wheat and Jointed Goatgrass (Aegilops cylindrica) Results in Pollen-Mediated Gene Flow of Imi1

Published online by Cambridge University Press:  20 January 2017

Alejandro Perez-Jones
Affiliation:
Department of Crop and Soil Science, Oregon State University, 107 Crop Science Building, Corvallis, OR 97331
Bianca A. B. Martins
Affiliation:
Department of Crop and Soil Science, Oregon State University, 107 Crop Science Building, Corvallis, OR 97331
Carol A. Mallory-Smith
Affiliation:
Department of Crop and Soil Science, Oregon State University, 107 Crop Science Building, Corvallis, OR 97331
Corresponding

Abstract

Imidazolinone-resistant (IR) winter wheat allows selective control of jointed goatgrass with the herbicide imazamox. However, the spontaneous hybridization between jointed goatgrass and IR winter wheat threatens the value of the IR technology. The objectives of this study were to determine if F1 hybrids collected in a commercial production field under IR winter wheat–fallow rotation in Oregon and their first-backcross progeny (BC1) carried the Imi1 gene and were resistant to imazamox, and to analyze the parentage of F1 and BC1 plants. The average seed set of the F1 spikes was 3.3%, and the average germination of BC1 seed was 52%. All F1 and BC1 plants tested carried Imi1. Jointed goatgrass plant mortality was 100% when treated with imazamox at 0.053 kg ai ha−1, compared to 0% for IR winter wheat and BC1 progeny. All F1 plants had jointed goatgrass as the maternal parent; whereas, most BC1 plants (85.7%) were produced with IR winter wheat as the paternal backcross parent. Although the backcrossing of F1 hybrids with jointed goatgrass is very low, it demonstrates the potential for introgression of Imi1 from IR winter wheat into jointed goatgrass under natural field conditions.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below.

References

Al-Ahmad, H., Galili, S., and Gressel, J. 2004. Tandem constructs to mitigate transgene persistence: tobacco as a model. Mol. Ecol. 13:697710.CrossRefGoogle Scholar
Anderson, J. A., Matthiesen, L., and Hegstad, J. 2004. Resistance to an imidazolinone herbicide is conferred by a gene on chromosome 6DL in the wheat line cv. 9804. Weed Sci. 52:8390.CrossRefGoogle Scholar
Anderson, R. L. 1993. Jointed goatgrass (Aegilops cylindrica) ecology and interference in winter wheat. Weed Sci. 41:388393.Google Scholar
Ball, D. A., Young, F. L., and Ogg, A. G. Jr. 1999. Selective control of jointed goatgrass (Aegilops cylindrica) with imazamox in herbicide-resistant wheat. Weed Technol. 13:7782.Google Scholar
Brûlé-Babel, A., Willenborg, C. J., Friesen, L. F., and Van Acker, R. C. 2006. Modeling the influence of gene flow and selection pressure on the frequency of a GE herbicide-tolerant trait in non-GE wheat and wheat volunteers. Crop Sci. 46:17041710.CrossRefGoogle Scholar
Corbett, C. A. L. and Tardif, F. J. 2006. Detection of resistance to acetolactate synthase inhibitors in weeds with emphasis on DNA-based techniques: a review. Pest Manag. Sci. 62:584597.CrossRefGoogle ScholarPubMed
Dale, P. J., Clarke, B., and Fontes, E. M. G. 2002. Potential for the environmental impact of transgenic crops. Nat. Biotechnol. 20:567574.CrossRefGoogle ScholarPubMed
Daniell, H. 2002. Molecular strategies for gene containment in transgenic crops. Nat. Biotechnol. 20:581586.CrossRefGoogle ScholarPubMed
Dewey, S. 1996. Jointed goatgrass: an overview of the problem. Pages 12. In Jenks, B. ed. Proceedings of the Pacific Northwest Jointed Goatgrass Conference. Lincoln, NE University of Nebraska.Google Scholar
Donald, W. W. and Ogg, A. G. Jr. 1991. Biology and control of jointed goatgrass (Aegilops cylindrica), a review. Weed Technol. 5:317.Google Scholar
Ellstrand, N. C., Prentice, H. C., and Hancock, J. F. 1999. Gene flow and introgression from domesticated plants into their wild relatives. Annu. Rev. Ecol. Syst. 30:539563.CrossRefGoogle Scholar
[FAO] Food and Agriculture Organization of the United Nations 2010. FAOSTAT. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor. Accessed February 15, 2010.Google Scholar
Feldman, M. and Sears, E. R. 1981. The wild gene resources of wheat. Sci. Am. 244:102112.CrossRefGoogle Scholar
Gaines, T., Byrne, P., Westra, P., Nissen, S. J., Henry, W. B., Shaner, D. L., and Chapman, P. L. 2008. Jointed goatgrass (Aegilops cylindrica) by imidazolinone-resistant wheat hybridization under field conditions. Weed Sci. 56:3236.CrossRefGoogle Scholar
Gandhi, H. T., Mallory-Smith, C. A., Watson, C. J. W., Vales, M. I., Zemetra, R. S., and Riera-Lizarazu, O. 2006. Hybridization between wheat and jointed goatgrass (Aegilops cylindrica) under field conditions. Weed Sci. 54:10731079.CrossRefGoogle Scholar
Gandhi, H. T., Vales, M. I., Watson, C. J. W., Mallory-Smith, C. A., Mori, N., Rehman, M., Zemetra, R. S., and Riera-Lizarazu, O. 2005. Chloroplast and nuclear microsatellite analysis of Aegilops cylindrica . Theor. Appl. Genet. 111:561572.CrossRefGoogle ScholarPubMed
Gressel, J. 1999. Tandem constructs: preventing the rise of superweeds. Trends Biotechnol. 17:361366.CrossRefGoogle ScholarPubMed
Guadagnuolo, R., Savova-Bianchi, D., and Felber, F. 2001. Gene flow from wheat (Triticum aestivum L.) to jointed goatgrass (Aegilops cylindrica Host.), as revealed by RADP and microsatellite markers. Theor. Appl. Genet. 103:18.CrossRefGoogle Scholar
Hanson, B. D., Mallory-Smith, C. A., Price, W. J., Shafii, B., Thill, D. C., and Zemetra, R. S. 2005. Interspecific hybridization: potential for movement of herbicide resistance from wheat to jointed goatgrass. Weed Technol. 19:674682.CrossRefGoogle Scholar
Hanson, B. D., Shaner, D. L., Westra, P., and Nissen, S. J. 2006. Response of selected hard red wheat lines to imazamox as affected by number and location of resistance genes, parental background, and growth habit. Crop Sci. 46:12061211.CrossRefGoogle Scholar
Hegde, S. G. and Waines, J. G. 2004. Hybridization and introgression between bread wheat and wild and weedy relatives in North America. Crop Sci. 44:11451155.CrossRefGoogle Scholar
Ishii, T., Mori, N., and Oghihara, Y. 2001. Evaluation of allelic diversity at microsatellite loci among common wheat and its ancestral species. Theor. Appl. Genet. 103:896904.CrossRefGoogle Scholar
Johnson, B. L. 1967. Confirmation of the genome donors of Aegilops cylindrica . Nature. 216:859862.CrossRefGoogle Scholar
Kimber, G. and Sears, E. R. 1987. Evolution in the genus Triticum and the origin of cultivated wheat. Pages 154164. In Heyne, E. G. ed. Wheat and Wheat Improvement. 2nd ed. Madison, WI American Society of Agronomy.Google Scholar
Kimber, G. and Zhao, Y. H. 1983. The D genome of the Triticeae. Can. J. Genet. Cytol. 25:581589.CrossRefGoogle Scholar
Knezevic, S. Z., Streibig, J. C., and Ritz, C. 2007. Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol. 21:840848.CrossRefGoogle Scholar
Kroiss, L. J., Tempalli, P., Hansen, J. H., Vales, M. I., Riera-Lizarazu, O., Zemetra, R. S., and Mallory-Smith, C. A. 2004. Marker assessed retention of wheat chromatin in wheat (Triticum aestivum) by jointed goatgrass (Aegilops cylindrica) backcross derivatives. Crop Sci. 44:14291433.CrossRefGoogle Scholar
Linc, G., Friebe, B., Kynast, R., Molnar-Lang, M., Kozegi, B., Sutka, J., and Gill, B. 1999. Molecular cytogenetics analysis of Aegilops cylindrica . Genome. 42:497503.CrossRefGoogle Scholar
Loureiro, I., Escorial, C., Garcia Baudin, J. M., and Chueca, M. C. 2008. Hybridization between wheat and the wild species Aegilops geniculata and hybrid fertility for potential herbicide resistance transfer. Weed Res. 48:561570.CrossRefGoogle Scholar
Morrison, L. A., Crémieux, L., and Mallory-Smith, C. A. 2002a. Infestations of jointed goatgrass (Aegilops cylindrica) and its hybrids with wheat in Oregon wheat fields. Weed Sci. 50:737747.CrossRefGoogle Scholar
Morrison, L. A., Riera-Lizarazu, O., Cremieux, L., and Mallory-Smith, C. A. 2002b. Jointed goatgrass (Aegilops cylindrica Host) × wheat (Triticum aestivum L.) hybrids: hybridization dynamics in Oregon wheat fields. Crop Sci. 42:18631872.CrossRefGoogle Scholar
Newhouse, K. E., Smith, W. A., Starrett, M. A., Schaefer, T. J., and Singh, B. K. 1992. Tolerance to imidazolinone herbicides in wheat. Plant Physiol. 100:882886.CrossRefGoogle ScholarPubMed
Ogg, A. G. Jr. 1993. Jointed goatgrass survey. Magnitude and scope of the problem. Pages 612. In Westra, P. and Anderson, R. eds. Jointed Goatgrass: A Threat to U.S. Winter Wheat. Fort Collins, CO Colorado State University.Google Scholar
Perez-Jones, A., Mallory-Smith, C. A., Hansen, J. L., and Zemetra, R. S. 2006a. Introgression of an imidazolinone-resistance gene from winter wheat (Triticum aestivum L.) into jointed goatgrass (Aegilops cylindrica Host). Theor. Appl. Genet. 114:177186.CrossRefGoogle Scholar
Perez-Jones, A., Mallory-Smith, C. A., Riera-Lizarazu, O., Watson, C. J. W., Wang, Z., Rehman, M., and Zemetra, R. S. 2006b. Introgression of a strawbreaker foot rot resistance gene from winter wheat into jointed goatgrass. Crop Sci. 46:21552160.CrossRefGoogle Scholar
Pestova, E., Korzun, V., Goncharov, N. P., Hammer, K., Ganal, M. W., and Röder, M. S. 2000. Microsatellite analysis of Aegilops tauschii germplasm. Theor. Appl. Genet. 101:100106.CrossRefGoogle Scholar
Pozniak, C. J., Birk, I. T., O'Donoughue, L. S., Ménard, C., Hucl, P. J., and Singh, B. K. 2004. Physiological and molecular characterization of mutation-derived imidazolinone resistance in spring wheat. Crop Sci. 44:14341443.CrossRefGoogle Scholar
Pozniak, C. J. and Hucl, P. J. 2004. Genetic analysis of imidazolinone resistance in mutation-derived lines of common wheat. Crop Sci. 44:2330.CrossRefGoogle Scholar
R Development Core Team 2006. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.r-project.org.Google Scholar
Rehman, M., Hansen, J., Brown, J., Price, W., Zemetra, R. S., and Mallory-Smith, C. A. 2006. Effect of wheat genotype on the phenotype of wheat × jointed goatgrass (Aegilops cylindrica) hybrids. Weed Sci. 54:690694.CrossRefGoogle Scholar
Röder, M. S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M. H., Leroy, P., and Ganal, M. W. 1998. A microsatellite map of wheat. Genetics. 149:20072023.Google ScholarPubMed
Schoenenberger, N., Felber, F., Savova-Bianchi, D., and Guadagnuolo, R. 2005. Introgression of wheat DNA markers from A, B and D genomes in early generation progeny of Aegilops cylindrica Host × Triticum aestivum L. hybrids. Theor. Appl. Genet. 111:13381346.CrossRefGoogle Scholar
Schoenenberger, N., Guadagnuolo, R., Savova-Bianchi, D., Küpfer, P., and Felber, F. 2006. Molecular analysis, cytogenetics and fertility of introgression lines from transgenic wheat to Aegilops cylindrica Host. Genetics. 174:20612070.CrossRefGoogle ScholarPubMed
Seefeldt, S. S., Zemetra, R. S., Young, F. L., and Jones, S. S. 1998. Production of herbicide-resistant jointed goatgrass (Aegilops cylindrica) × wheat (Triticum aestivum) hybrids in the field by natural hybridization. Weed Sci. 46:632634.Google Scholar
Shaner, D. L. and Singh, B. K. 1997. Acetohydroxyacid synthase inhibitors. Pages 69110. In Roe, R. M., Burton, J. D., and Kuhr, R. J. eds. Herbicide Activity: Toxicology, Biochemistry and Molecular Biology. Amsterdam IOS Press.Google Scholar
Snyder, J., Mallory-Smith, C. A., Balter, S., Hansen, J., and Zemetra, R. S. 2000. Seed production on Triticum aestivum by Aegilops cylindrica hybrids in the field. Weed Sci. 48:588593.CrossRefGoogle Scholar
Sommer, S. S., Groszbar, A. R., and Bottema, C. D. 1992. PCR amplification of specific alleles (PASA) is a general method for rapidly detecting known single base-pair changes. Biotechniques. 12:8287.Google Scholar
Souza, E. J., Lazar, M. D., Guttieri, M. J., Thill, D., and Rauch, T. 2006. Registration of ‘Idaho 587’ wheat. Crop Sci. 46:13871389.CrossRefGoogle Scholar
Stewart, C. N. Jr., Halfhill, M. D., and Warwick, S. I. 2003. Transgene introgression from genetically modified crops to their wild relatives. Nat. Rev. Genet. 4:806817.CrossRefGoogle ScholarPubMed
Stone, A. E. and Peeper, T. F. 2004. Characterizing jointed goatgrass (Aegilops cylindrica) × winter wheat hybrids in Oklahoma. Weed Sci. 52:742745.CrossRefGoogle Scholar
Streibig, J. C., Rudemo, M., and Jensen, J. E. 1993. Dose–response curves and statistical models. Pages 2956. In Streibig, J. C. and Kudsk, P. eds. Herbicide Bioassays. Boca Raton, FL CRC Press.Google Scholar
Tan, S., Evans, R. R., Dahmer, M. L., Singh, B. K., and Shaner, D. L. 2005. Imidazolinone-tolerant crops: history, current status and future. Pest Manag. Sci. 61:246257.CrossRefGoogle Scholar
Umbarger, H. E. 1978. Amino acid biosynthesis and its regulation. Ann. Rev. Biochem. 47:533606.CrossRefGoogle ScholarPubMed
Waines, J. G. and Hegde, S. G. 2003. Intraspecific gene flow in bread wheat as affected by reproductive biology and pollination ecology of wheat flowers. Crop Sci. 43:451463.CrossRefGoogle Scholar
Wang, G., Miyashita, N. T., and Tsunewaki, K. 1997. Plasmon analyses of Triticum (wheat) and Aegilops: PCR-single-stand conformational polymorphism (PCR-SSCP) analyses of organellar DNAs. Proc. Nat. Acad. Sci. USA. 94:1457014577.CrossRefGoogle ScholarPubMed
Wang, Z. N., Hang, A., Hansen, J., Burton, C., Mallory-Smith, C. A., and Zemetra, R. S. 2000. Visualization of A- and B-genome chromosomes in wheat (Triticum aestivum L.) × jointed goatgrass (Aegilops cylindrica Host) backcross progenies. Genome. 43:10381044.CrossRefGoogle ScholarPubMed
Wang, Z. N., Zemetra, R. S., Hansen, J., Hang, A., Mallory-Smith, C. A., and Burton, C. 2002. Determination of the paternity of wheat (Triticum aestivum L) × jointed goatgrass (Aegilops cylindrica Host) BC1 plants by using genomic in situ hybridization (GISH) technique. Crop Sci. 42:939943.CrossRefGoogle Scholar
Wang, Z. N., Zemetra, R. S., Hansen, J., and Mallory-Smith, C. A. 2001. The fertility of wheat × jointed goatgrass hybrids and its backcross progenies. Weed Sci. 49:340345.CrossRefGoogle Scholar
Weissmann, S., Feldman, M., and Gressel, J. 2005. Sequence evidence for sporadic intergeneric DNA introgression from wheat into a wild Aegilops species. Mol. Biol. Evol. 22:20552062.CrossRefGoogle ScholarPubMed
Weissmann, S., Feldman, M., and Gressel, J. 2008. Hypothesis: transgene establishment in wild relatives of wheat can be prevented by utilizing the Ph1 gene as a senso stricto chaperon to prevent homoeologous recombination. Plant Sci. 175:410414.CrossRefGoogle Scholar
Zaharieva, M. and Monneveux, P. 2006. Spontaneous hybridization between bread wheat (Triticum aestivum L.) and its wild relatives in Europe. Crop Sci. 46:512527.CrossRefGoogle Scholar
Zemetra, R. S., Hansen, J., and Mallory-Smith, C. A. 1998. Potential for gene transfer between wheat (Triticum aestivum) and jointed goatgrass (Aegilops cylindrica). Weed Sci. 46:313317.Google Scholar
Zhao, C., Ascenzi, R., and Singh; BASF Aktiengesellschaft, B. K. 2005. Methods and compositions for analyzing AHASL genes. Inventors: Zhao, C., Bijay, R., and Singh, K. Assignee: BASF AG. U.S. patent WO2005093093.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 18 *
View data table for this chart

* Views captured on Cambridge Core between 20th January 2017 - 20th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-86jzp Total loading time: 0.728 Render date: 2021-01-20T04:46:44.656Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Hybridization in a Commercial Production Field between Imidazolinone-Resistant Winter Wheat and Jointed Goatgrass (Aegilops cylindrica) Results in Pollen-Mediated Gene Flow of Imi1
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Hybridization in a Commercial Production Field between Imidazolinone-Resistant Winter Wheat and Jointed Goatgrass (Aegilops cylindrica) Results in Pollen-Mediated Gene Flow of Imi1
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Hybridization in a Commercial Production Field between Imidazolinone-Resistant Winter Wheat and Jointed Goatgrass (Aegilops cylindrica) Results in Pollen-Mediated Gene Flow of Imi1
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *