Skip to main content Accessibility help

Changes in biomass and root:shoot ratio of field-grown Canada thistle (Cirsium arvense), a noxious, invasive weed, with elevated CO2: implications for control with glyphosate

  • Lewis H. Ziska, Shaun Faulkner (a1) and John Lydon (a2)


Canada thistle was grown under field conditions in 2000 and 2003 at ambient and elevated (∼ 350 μmol mol−1 above ambient) carbon dioxide [CO2] to assess how rising [CO2] alters growth, biomass allocation, and efficacy of the postemergent herbicide glyphosate. By the time of glyphosate application, approximately 2 mo after emergence, elevated CO2 had resulted in significant increases in both root and shoot biomass. However, the relative positive effect of [CO2] was much larger for root, relative to shoot growth, during this period (2.5- to 3.3-fold vs. 1.2- to 1.4-fold, respectively) with a subsequent increase in root to shoot ratio. Glyphosate was applied at 2.24 kg ae ha−1 in 2000 and 2003. Subjective classification of leaf damage in shoots after spraying indicated no significant difference in the extent of necrosis in aboveground tissue as a function of CO2 concentration. After a 6-wk regrowth period, significant reductions in shoot and root biomass relative to unsprayed plots were observed under ambient [CO2]. However, the decrease in the ratio of sprayed to unsprayed biomass was significantly less at elevated relative to ambient [CO2] conditions for roots in both years, and no difference in shoot biomass was observed between sprayed and unsprayed plots for Canada thistle grown at elevated [CO2] in either year. The observed reduction in glyphosate efficacy at the enriched [CO2] treatment did not appear to be associated with differential herbicide uptake, suggesting that tolerance was simply a dilution effect, related to the large stimulation of root relative to shoot biomass at elevated [CO2]. Overall, the study indicates that carbon dioxide–induced increases in root biomass could make Canada thistle and other perennial weeds that reproduce asexually from belowground organs harder to control in a higher [CO2] world.


Corresponding author

Corresponding author. Alternate Crop and Systems Laboratory, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD 20705;


Hide All
Bernston, G. N. and Woodward, F. I. 1992. The root system architecture and development of Senecio vulgaris in elevated CO2 and drought. Funct. Ecol 6:324333.
Bradshaw, L. D., Padgette, S. R., Kimball, S. L., and Wells, B. H. 1997. Perspectives on glyphosate resistance. Weed Technol 11:189198.
DeLucia, E. N., Sasek, T. W., and Strain, B. R. 1985. Photosynthetic inhibition after long-term exposure to elevated levels of atmospheric CO2 . Photosynth. Res 7:175184.
Donald, W. W. 1990. Management and control of Canada thistle. Rev. Weed Sci 5:193250.
Hiroyoshi, O., Masaaki, T., and Makoto, K. 1993. Effects of polyoxyethylene nonylphenyl ether and silicon surfactants on penetration of propanil through adaxial epidermis of Commelina communis . J. Pestic. Sci 18:8590.
McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J., and White, K. S. 2001. Climate Change 2001: Impacts, Adaptation, and Vulnerability. Cambridge, Great Britain: Cambridge University Press. Pp. 756.
Patterson, D. T. 1995a. Effects of environmental stress on weed/crop interactions. Weed Sci 43:483490.
Patterson, D. T. 1995b. Weeds in a changing climate. Weed Sci 43:685701.
Patterson, D. T. and Flint, E. P. 1990. Implications of increasing carbon dioxide and climate change for plant communities and competition in natural and managed ecosystems. Pages 83110 in Kimball, B. A., Rosenburg, N. J., and Allen, L. H. Jr. eds. Impact of Carbon Dioxide, Trace Gases and Climate Change on Global Agriculture. Madison, WI: American Society of Agronomy, ASA Special Publication No. 53.
Pimental, D. L., Lach, L., Zuniga, R., and Morrison, D. 2000. Environmental and economic costs associated with non-indigenous species in the United States. Bioscience 50:5365.
Prentiss, A. N. 1889. On root propagation of Canada thistle. Cornell Univ. Agric. Exp. Stn. Bull 15:190192.
Prior, S. A., Rogers, H. H., Runion, G. B., and Mauney, J. R. 1994. Effects of free-air enrichment on cotton root growth. Agric. For. Meteorol 70:6986.
Robbins, W. W., Bellue, M. K., and Ball, W. S. 1970. Weeds of California. Sacramento, CA: University of California Press. Pp. 450453.
Rogers, H. H., Cure, J. D., and Smith, J. M. 1986. Soybean growth and yield response to elevated carbon dioxide. Agric. Ecosyst. Environ 16:112128.
Salzman, F., Renner, K., and Kells, J. 1997. Chemical Control of Canada Thistle. East Lansing, MI: Michigan State University, Extension Bulletin E-2245.
Skinner, K., Smith, L., and Rice, P. 2000. Using noxious weed lists to prioritize targets for developing weed management strategies. Weed Sci 48:640644.
White, D. J., Haber, E., and Keddy, C. 1993. Invasive Plants of Natural Habitats in Canada: An Integrated Review of Wetland and Upland Species and Legislation Governing their Control. Ottawa, Canada: Canadian Wildlife Service.
Zabkiewicz, J. A. 2000. Adjuvants and herbicidal efficacy: present status and future prospects. Weed Res 40:139149.
Ziska, L. H. 2000. The impact of elevated carbon dioxide on yield loss from a C3 and C4 weed in field grown soybean. Global Change Biol 6:899905.
Ziska, L. H. 2003. Evaluation of the growth response of six invasive species to past, present and future carbon dioxide concentrations. J. Exp. Bot 54:395404.
Ziska, L. H., Teasdale, J. R., and Bunce, J. A. 1999. Future atmospheric carbon dioxide may increase tolerance to glyphosate. Weed Sci 47:608615.


Related content

Powered by UNSILO

Changes in biomass and root:shoot ratio of field-grown Canada thistle (Cirsium arvense), a noxious, invasive weed, with elevated CO2: implications for control with glyphosate

  • Lewis H. Ziska, Shaun Faulkner (a1) and John Lydon (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.