Skip to main content
    • Aa
    • Aa

Host Resistance and Parasite Virulence in Striga–Host Plant Interactions: A Shifting Balance of Power

  • Michael P. Timko (a1), Kan Huang (a1) and Karolina E. Lis (a1)

The witchweeds, members of the genus Striga, are noxious and persistent pests in farmers' fields and serious constraints to crop productivity throughout Africa, India, and Southeast Asia. Among the primary hosts for Striga are the major cereals (maize, sorghum, rice, and millet) and grain legumes (cowpea) that are important food staples worldwide. The negative impact of parasitic plants on crop productivity increases globally each year, and their potential for affecting domestic agriculture looms larger as the movement of seed resources expands on a global scale. At the present time there is a limited understanding of how Striga and other parasitic plants select a suitable host and overcome the innate defense responses of the host in order to complete their life-cycle. In the grasses most reported resistance to Striga appears to be polygenic with a large genotype by environment interaction. In contrast, resistance to S. gesnerioides in cowpea is conferred by single dominant genes functioning in a race-specific manner suggesting that a gene-for-gene mechanism similar to effector-triggered immunity (ETI) described in other host–pathogen interactions is likely operating in these parasite-host associations. A hallmark of ETI is the direct or indirect recognition of parasite-derived avirulence (Avr) factors and other effectors that interfere with plant innate immunity by host sensors (or R proteins) leading to activation of defense responses. The recent cloning and functional characterization of a race-specific R gene from cowpea encoding a canonical coiled-coil (CC)-nucleotide binding site (NBS)-leucine-rich repeat (LRR) type R-protein opens the door for further exploration of the mechanism of host resistance and provides a focal point for studies aimed at uncovering the molecular and genetic factors underlying parasite virulence and host selection. The potential for the development of novel strategies for parasite control and eradication based on parasite virulence factors is discussed.

Corresponding author
Corresponding author's E-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

R. B. Abramovitch , J. C. Anderson , and G. B. Martin 2006. Bacterial elicitation and evasion of plant innate immunity. Nat. Rev. Mol. Cell Bio. 7:601611.

R. Aly , H. Cholakh , D. M. Joel , D. Leibman , B. Steinitz , A. Zelcer , A. Naglis , O. Yarden , and A. Gal-On 2009. Gene silencing of mannose 6-phosphate reductase in the parasitic weed Orobanche aegyptiaca through the production of homologous dsRNA sequences in the host plant. Plant Biotechnol. J. 7:487498.

I. O. Amusan , P. J. Rich , A. Menkir , T. Housley , and G. Ejeta 2008. Resistance to Striga hermonthica in a maize inbred line derived from Zea diploperennis . New Phytol. 178:157166.

I. D. K. Atokple , B. B. Singh , and A. M. Emechebe 1995. Genetics of resistance to Striga and Alectra in cowpea. J. Hered. 86:4549.

L. Baxter , S. Tripathy , N. Ishaque , et al. 2010. Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome. Science. 330:15491551.

A. F. Bent and D. Mackey 2007. Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu. Rev. Phytopathol. 45:399436.

T. Boller and G. Felix 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379406.

T. Boller and S -Y. He 2009. Innate immunity in plants: an arms race between pattern recognition receptors and effectors in microbial pathogens. Science. 324:742744.

C. J. Botanga and M. P. Timko 2005. Genetic structure and analysis of host and nonhost interactions of Striga gesnerioides (Witchweed) from Central Florida. Phytopathology. 95:11661173.

J. K. Bowen , C. H. Mesarich , J. Rees-George , W. Cui , A. Fitzgerald , J. Win , K. M. Plummer , and M. D. Templeton 2009. Candidate effector gene identification in the ascomycete fungal phytopathogen Venturia inaequalis by expressed sequence tag analysis. Molec. Plant Pathol. 10:431448.

D. C. Cameron , A. M. Coats , and W. E. Seel 2006. Differential resistance among host and non-host species underlies the variable success of the hemi-parasitic plant Rhinanthus minor . Ann. Bot.-London. 98:12891299.

J. Caplan , M. Padmanabhan , and S. P. Dinesh-Kumar 2008. Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe. 3:126135.

R. A. Cramer , C. M. La Rota , Y. Cho , M. Thon , K. D. Craven , D. L. Knudson , T. L. Mitchell , and C. B. Lawrence 2006. Bioinformatic analysis of expressed sequence tags derived from a compatible Alternaria brassicicola–Brassica oleracea interaction. Mol. Plant Pathol. 7:113124.

A. de Framond , P. J. Rich , J. McMillan , and G. Ejeta 2007. Effects of Striga parasitism of transgenic maize armed with RNAi constructs targeting essential S. asiatica genes. Pages 185196 in G. Ejeta and J. Gressel , eds. Integrating New Technologies for Striga Control, Towards Ending the Witch-hunt. Singapore World Scientific Publishing.

G. Ejeta 2007. Breeding for Striga resistance in sorghum: exploitation of an intricate host–parasite biology. Crop Sci. 47:S216S227.

J. G. Ellis , P. N. Dodds , and G. J. Lawrence 2007. Flax rust resistance gene specificity is based on direct resistance-avirulence protein interactions. Annu. Rev. Phytopathol. 45:289306.

J. G. Ellis , M. Rafiqi , P. Gan , A. Chakrabarti , and P. N. Dodds 2009. Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens. Curr. Opin. Plant Biol. 12:399405.

H. H. Flor 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9:275296.

V. Göhre and S. Robatzek 2008. Breaking the barriers: microbial effector molecules subvert plant immunity. Annu. Rev. Phytopathol. 46:189215.

B. S. Gowda , J. L. Riopel , and M. P. Timko 1999. NRS1: a resistance gene homolog expressed in roots of nonhost plants following parasitism by Striga asiatica (witchweed). Plant J. 20:217230.

D. L. Greenshield and J. D. G. Jones 2008. Plant pathogen effectors: getting mixed messages. Curr. Biol. 18:R128R130.

C. Grenier , Y. Ibrahim , B. I. G. Haussmann , D. Kiambi , and G. Ejeta 2007. Marker-assisted selection for Striga resistance in sorghum. Pages 159172 in G. Ejeta and J. Gressel , eds. Integrating New Technologies for Striga Control, Towards Ending the Witch-hunt. Singapore World Scientific Publishing.

A. L. Gurney , D. Grimanelli , F. Kanampiu , D. Hoisington , J. D. Scholes , and M. C. Press 2003. Novel sources of resistance to Striga hermonthica in Tripsacum dactyloides, a wild relative of maize. New Phytol. 160:557568.

A. L. Gurney , J. Slate , M. C. Press , and J. D. Scholes 2006. A novel form of resistance in rice to the angiosperm parasite Striga hermonthica . New Phytol. 169:199208.

B. I. G. Haussmann , D. E. Hess , G. O. Omanya , R. T. Folkertsma , B. V. S. Reddy , M. Kayentao , H. G. Welz , and H. H. Geiger 2004. Genomic regions influencing resistance to the parasitic weed Striga hermonthica in two recombinant inbred populations of sorghum. Theor. Appl. Genet. 109:10051016.

B. I. G. Haussmann , D. E. Hess , O. Omanya , B. V. S. Reddy , H. G. Welz , and H. H. Geiger 2001. Major and minor genes for stimulation of Striga hermonthica seed germination in sorghum, and interaction with different Striga populations. Crop Sci. 41:15071512.

S. J. Hearne 2009. Control: the Striga conundrum. Pest Manag. Sci. 65:603614.

Y. Hiraoka and Y. Sugimoto 2008. Molecular responses of sorghum to purple witchweed (Striga hermonthica) parasitism. Weed Sci. 56:356363.

Y. Hiraoka , H. Ueda , and Y. Sugimoto 2009. Molecular responses of Lotus japonicus to parasitism by the compatible species Orobanche aegyptiaca and the incompatible species Striga hermonthica . J. Exp. Bot. 60:641650.

M. E. Hood , J. M. Condon , M. P. Timko , and J. L. Riopel 1998. Primary haustorial development of Striga asiatica on host and nonhost species. Phytopathology. 88:7075.

J. D. G. Jones and J. L. Dangl 2006. The plant immune system. Nature. 444:323329.

D. Kusumoto , Y. Goldwasser , X. Xie , K. Yoneyama , and Y. Takeuchi 2007. Resistance of red clover (Trifolium pratense) to the root parasitic plant Orobanche minor is activated by salicylate but not by jasmonate. Ann. Bot. 100:537544.

J. A. Lane , J. A. Bailey , R. C. Butler , and P. J. Terry 1993. Resistance of cowpea [Vigna unguiculata (L.) Walp.] to Striga gesnerioides (Willd.) Vatke, a parasitic angiosperm. New Phytol. 125:405412.

J. A. Lane , T. H. M. Moore , D. V. Child , and K. F. Cardwell 1996. Characterization of virulence and geographic distribution of Striga gesnerioides on cowpea in West Africa. Plant Dis. 80:299301.

J. A. Lane , T. H. M. Moore , D. V. Child , K. F. Cardwell , B. B. Singh , and J. A. Bailey 1994. Virulence characteristics of a new race of the parasitic angiosperm Striga gesnerioides from southern Benin on cowpea (Vigna unguiculata). Euphytica. 72:183188.

J. Li , K. E. Lis , and M. P. Timko 2009. Molecular genetics of race-specific resistance of cowpea to Striga gesnerioides (Willd.). Pest Manag. Sci. 65:520527.

J. Li and M. P. Timko 2009. Gene-for-gene resistance in Striga-cowpea associations. Science. 325:1094.

R. K. Maiti , K. V. Ramaiah , S. S. Bisen , and V. L. Chidley 1984. A comparative study of the haustorial development of Striga asiatica (L.) Kuntze on sorghum cultivars. Ann. Bot. Fenn. 54:447457.

J. M. McDowell and S. A. Simon 2008. Molecular diversity at the plant-pathogen interface. Dev. Comp. Immunol. 32:736744.

A. Mohamed , A. Ellicott , T. L. Housley , and G. Ejeta 2003. Hypersensitive response to Striga infection in sorghum. Crop Sci. 43:13201324.

K. I. Mohamed , L. J. Musselman , and C. R. Riches 2001. The genus Striga (Scrophulariaceae) in Africa. Ann. Mo. Bot. Gard. 88:60103.

L. Mur , P. Kenton , R. Atzorn , O. Miersch , and C. Wasternack 2006. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol. 140:249262.

R. Oliva , J. Win , S. Raffaele , et al. 2010. Recent developments in effector biology of filamentous plant pathogens. Cell. MicroBiol. 12:705715.

A. Olivier , N. Benhamou , and G. D. Leroux 1991a. Cell surface interactions between sorghum roots and the parasitic weed Striga hermonthica: cytochemical aspects of cellulose distribution in resistant and susceptible host tissues. Can. J. Bot. 69:16791690.

A. Olivier , K. V. Ramaiah , and G. D. Leroux 1991b. Selection of sorghum (Sorghum bicolor Moench) varieties resistant to the parasitic weed Striga hermonthica (Del) Benth. Weed Res. 31:219225.

J. T. Ouédraogo , B. S. Gowda , M. Jean , et al. 2002b. An improved genetic linkage map for cowpea (Vigna unguiculata L.) combining AFLP, RFLP, RAPD and biochemical markers and biological resistance traits. Genome. 45:175188.

J. T. Ouédraogo , A. Olivier , M. P. Timko , and F. J. Belzile 2002a. AFLP markers for resistance against Striga gesnerioides race 1 in cowpea (Vigna unguiculata). Genome. 45:787793.

C. Parker and T. I. Polniaszek 1990. Parasitism of cowpea by Striga gesnerioides: variation in virulence and discovery of a new source of host resistance. Ann. Appl. Biol. 116:305311.

C. J. Parker 2009. Observations on the current status of Orobanche and Striga problems worldwide. Pest Manag. Sci. 65:453459.

A. Pérez-de-Luque , M. T. Moreno , and D. Rubiales 2008. Host plant resistance against broomrapes (Orobanche spp.): defence reactions and mechanisms of resistance. Ann. Appl. Biol. 152:131141.

S. Raffaele , R. A. Farrer , L. M. Cano , et al. 2010. Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science. 330:15401543.

N. Rispail , M. A. Dita , C. Gonzalez-Verdejo , A. Pérez -de-Luque , M. A. Castillejo , E. Prats , B. Roman , J. Jorrin , and D. Rubiales 2007. Plant resistance to parasitic plants: molecular approaches to an old foe. New Phytol. 173:703712.

J. Rodenburg , C. R. Riches , and J. M. Kayeke 2010. Addressing current and future problems of parasitic weeds in rice. Crop Prot. 29:210221.

P. C. Ronald and B. Beutler 2010. Plant and animal sensors of conserved microbial signatures. Science. 330:10611064.

S. Runo , A. Alakonya , J. Machuka , and N. Sinha 2010. RNA interference as a resistance mechanism against crop parasites in Africa: a “Trojan horse” approach. Pest Manag. Sci. 67:129136.

J. Runyon , M. Mescher , G. Felton , and C. de Morales 2010. Parasitism by Cuscuta pentagona sequentially induces JA and SA defense pathways in tomato. Plant Cell Environ. 33:290303.

H. Ryu , M. Han , S. Lee , et al. 2006. A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Rep. 25:836847.

J. Schirawski , G. Mannhaupt , K. Munch , et al. 2010. Pathogenicity determinants in smut fungi revealed by genome comparisons. Science. 330:15461548.

J. D. Scholes and M. C. Press 2008. Striga infestation of cereal crops: an unsolved problem in resource limited agriculture. Curr. Opin. Plant Biol. 11:180186.

B. B. Singh and A. M. Emechebe 1990. Inheritance of Striga resistance in cowpea genotype B301. Crop Sci. 30:879881.

P. D. Spanu , J. C. Abbott , J. Amselem , et al. 2010. Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science. 330:15431546.

P. J. Swarbrick , K. Huang , G. Liu , J. Slate , M. C. Press , and J. D. Scholes 2008. Global patterns of gene expression in rice cultivars undergoing a susceptible or resistant interaction with the parasitic plant Striga hermonthica . New Phytol. 179:515529.

F. L. Takken , M. Albrecht , and W. I. Tameling 2006. Resistance proteins: molecular switches of plant defence. Curr. Opin. Plant Biol. 9:383390.

W. I. L. Tameling and M. H. A. J. Joosten 2007. The diverse roles of NB-LRR proteins in plants. Physiol. Mol. Plant P. 71:126134.

H. Thordal-Christensen 2003. Fresh insights into processes of nonhost resistance. Curr. Opin. Plant Biol. 6:351357.

M. P. Timko , B. S. Gowda , J. Ouédraogo , and B. Ousmane 2007. Molecular markers for analysis of resistance to Striga gesnerioides in cowpea. Pages 115128 in G. Ejeta and J. Gressel , eds. Integrating New Technologies for Striga Control, Towards Ending the Witch-hunt. Singapore World Scientific Publishing.

M. P. Timko , P. J. Rushton , T. W. Laudeman , M. T. Bokowiec , E. Chipumuro , F. Cheung , C. D. Town , and X. Chen 2008. Sequencing and analysis of the gene-rich space of cowpea. BMC Genomics. 9:103.

M. P. Timko and B. B. Singh 2008. Cowpea, a multifunctional legume. Pages 227258 in P. H. Moore and R. Ming , eds. Genomics of Tropical Crop Plants. New York Springer Science + Business Media.

A. Tomilov , N. Tomilova and J. I. Yoder 2006. Agrobacterium tumefaciens and Agrobacterium rhizogenes transformed roots of the parasitic plant Triphysaria versicolor retain parasitic competence. Planta. 225:10591071.

T. Torto-Alalibo , C. W. Collmer , M. Lineberg , D. Bird , A. Collmer , and B. M. Tyler 2009. Common and contrasting themes in host cell-targeted effectors from bacterial, fungal, oomycete and nematode plant symbionts described using the Gene Ontology. BMC MicroBiol. 9(Suppl 1):S3.

M. Touré , A. Olivier , B. R. Ntare , J. A. Lane , and C-A. St.-Pierre 1997. Inheritance of resistance to Striga gesnerioides biotypes from Mali and Niger in cowpea (Vigna unguiculata (L.) Walp.). Euphytica. 94:273278.

B. M. Tyler 2009. Entering and breaking: virulence effector proteins of oomycete plant pathogens. Cell. MicroBiol. 11:1320.

R. A. L. van der Hoorn and S. Kamoun 2008. From guard to decoy: A new model for perception of plant pathogen effectors. Plant Cell. 20:20092017.

C. Vieira Dos Santos , P. Delavault , P. Letousey , and P. Thalouarn 2003. Identification by suppression subtractive hybridization and expression analysis of Arabidopsis thaliana putative defence genes during Orobanche ramosa infection. Physiol. Mol. Plant P. 62:297303.

R. K. Vogler , G. Ejeta , and L. G. Butler 1996. Inheritance of low production of Striga germination stimulant in sorghum. Crop Sci. 36:11851191.

J. H. Westwood , C. W. dePamphilis , M. Das , M. Fernandez-Aparicio , L. A. Honaas , M. P. Timko , N. J. Wickett , and J. I. Yoder 2011. The Parasitic Plant Genome Project: new tools for understanding the biology of Orobanche and Striga . Weed Sci. 60:295306.

J. H. Westwood , J. I. Yoder , M. P. Timko , and C. W. dePamphilis 2010. The evolution of parasitism in plants. Trends Plant Sci. 15:227235.

J. P. Wilson , D. E. Hess , and W. W. Hanna 2000. Resistance to Striga hermonthica in wild accessions of the primary gene pool of Pennisetum glaucum . Phytopathology. 90:11691172.

J. P. Wilson , D. E. Hess , W. W. Hanna , K. A. Kumar , and S. C. Gupta 2004. Pennisetum glaucum subsp. monodii accessions with Striga resistance in West Africa. Crop Prot. 23:865870.

S. Yoshida and K. Shirasu 2009. Multiple layers of incompatibility to the parasitic witchweed, Striga hermonthica . New Phytol. 183:180189.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Weed Science
  • ISSN: 0043-1745
  • EISSN: 1550-2759
  • URL: /core/journals/weed-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 86 *
Loading metrics...

* Views captured on Cambridge Core between 20th January 2017 - 20th September 2017. This data will be updated every 24 hours.