Skip to main content
×
×
Home

Insecticide Seed Treatments Partially Safen Rice to Low Rates of Glyphosate and Imazethapyr

  • Steven M. Martin (a1), Jason K. Norsworthy (a2), Robert C. Scott (a3), Jarrod Hardke (a4), Gus M. Lorenz (a5) and Ed Gbur (a6)...
Abstract

Each year there are multiple reports of drift occurrences, and the majority of drift complaints in rice are from imazethapyr or glyphosate. In 2014 and 2015, multiple field experiments were conducted near Stuttgart, AR, and near Lonoke, AR, to evaluate whether insecticide seed treatments would reduce injury from glyphosate or imazethapyr drift or decrease the recovery time following exposure to a low rate of these herbicides. Study I was referred to as the “seed treatment study,” and Study II was the “drift timing study.” In the seed treatment study the conventional rice cultivar ‘Roy J’ was planted, and herbicide treatments included imazethapyr at 10.5 g ai ha–1, glyphosate at 126 g ae ha–1, or no herbicide. Each plot had either a seed treatment of thiamethoxam, clothianidin, chlorantraniliprole, or no insecticide seed treatment. The herbicides were applied at the two- to three-leaf growth stage. Crop injury was assessed 1, 3, and 5 wk after application. Averaged over site-years, thiamethoxam-treated rice had less injury than rice with no insecticide seed treatment at each rating, along with an increased yield. Clothianidin-treated rice had an increased yield over no insecticide seed treatment, but the reduction in injury for both herbicides was less pronounced than in the thiamethoxam-treated plots. Overall, chlorantraniliprole was generally the least effective of the three insecticides in reducing injury from either herbicide and in protecting rice yield potential. A second experiment conducted at Stuttgart, AR, was meant to determine whether damage to rice from glyphosate and imazethapyr was influenced by the timing (15, 30, and 45 d after planting) of exposure to herbicides for thiamethoxam-treated and nontreated rice. There was an overall reduction in injury with the use of thiamethoxam, but the reduction in injury was not dependent on the timing of the drift event. Reduction in damage from physical drift of glyphosate and imazethapyr as well as increased yields over the absence of an insecticide seed treatment appear to be an added benefit.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Insecticide Seed Treatments Partially Safen Rice to Low Rates of Glyphosate and Imazethapyr
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Insecticide Seed Treatments Partially Safen Rice to Low Rates of Glyphosate and Imazethapyr
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Insecticide Seed Treatments Partially Safen Rice to Low Rates of Glyphosate and Imazethapyr
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited
Corresponding author
*Author for correspondence: Steven M. Martin, Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704. (Email: steven_martin2010@yahoo.com)
References
Hide All
Benbrook, CM (2016) Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur 28:3
Bond, JA, Griffin, JL, Ellis, JM, Linscombe, SD, Williams, BJ (2006) Corn and rice response to simulated drift of imazethapyr and imazapyr. Weed Technol 113117
Counce, PA, Keisling, TC, Mitchell, AJ (2000) A uniform, objective, and adaptive system for expressing rice development. Crop Sci 40:436443
Croughan, TP (1994) Application of tissue culture techniques to the development of herbicide resistant rice. Louisiana Ag 3:2526
Davis, B, Scott, RC, Norsworthy, JK, Gbur, E (2011) Response of rice (Oryza sativa) to low rates of glyphosate and glufosinate. Weed Technol 198203
Ellis, JM, Griffin, JL, Linscombe, SD, Webster, EP (2003) Rice (Oryza sativa) and corn (Zea mays) response to simulated drift of glyphosate and glufosinate. Weed Technol 17:452460
Everett, M, Lorenz, G, Slaton, N, Hardke, J (2015) Efficacy of rice insecticide seed treatments at selected nitrogen rates for control of the rice water weevil (Coleoptera: Curculionidae). J Econ Entomol 108:17571769
Hardke, JT (2012) Arkansas Rice Production Handbook. Arkansas Cooperative Extension Service Miscellaneous Publications 192. Little Rock, AR: University of Arkansas. 212 pp
Hardke, JT (2015) Trends in Arkansas rice production, 2014. Pages 11–22 in Norman RJ, Moldenhauer KAK, eds. BR Wells Arkansas Rice Research Studies 2014, Research Series 626. Fayetteville, AR: University of Arkansas System, Division of Agriculture
Hensley, JB, Webster, EP, Blouin, DC, Harrell, DL, Bond, JA (2012) Impact of drift rates of imazethapyr and low carrier volume on non-Clearfield rice. Weed Technol 26:236242
Hensley, JB, Webster, EP, Blouin, DC, Harrell, DL, Bond, JA (2013) Response of rice to drift rates of glyphosate applied at low carrier volumes. Weed Technol 27:257262
Koger, CH, Shaner, DL, Krutz, LJ, Walker, TW, Buehring, N, Henry, WB, Thomas, WE, Wilcut, JW (2005) Rice (Oryza sativa) response to drift rates of glyphosate. Pest Manag Sci 61:11611167
Kurtz, ME, Street, JE (2003) Response of rice (Oryza sativa) to glyphosate applied to simulate drift. Weed Technol 17:234238
Miller, MR, Scott, RC, Lorenz, G, Hardke, J, Norsworthy, JK (2016) Effect of insecticide seed treatment on safening rice from reduced rates of glyphosate and imazethapyr. Int J Agron. http://dx.doi.org/10.1155/2016/7623743 Accessed: July 30, 2017
Ming, Z, Zhang, W, Feng, L, Xiaobo, C, Li, H, Baohua, X (2016) Characterization of an Apis cerana cerana P450 gene (AccCYP336A1) and its role in oxidative stresses responses. Gene 584:120128
National Agricultural Statistics Service [NASS] (2016) Quick Stats (Crops). https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=ARKANSAS. Accessed: May 2, 2017
Norsworthy, JK, Bond, J, Scott, RC (2013) Weed management practices and needs in Arkansas and Mississippi rice. Weed Technol 27:623630
Purcell, LC (2000) Soybean canopy coverage and light interception measurements using digital imagery. Crop Sci 40:834837
Senseman, SA (2007) Herbicide Handbook. 9th edn. Lawrence, KS: Weed Science Society of America. Pp 243248
Shaner, DL (1991) Physiological effects of the imidazolinone herbicides. Pages 129137 in Shaner DL, O’Connor SL, eds. The Imidazolinone Herbicides. Boca Raton, FL.: CRC Press
Smith, DB, Bode, LE, Gerard, PD (2000) Predicting ground boom spray drift. Am Soc Agri Eng 43:547553
Stout, MJ, Harrell, D, Tindall, KV, Bond, J (2009) Impacts of seeding rate on interactions between rice and rice water weevils. J Econ Entomol 102:18371845
Taillon, NM, Lorenz, GM, Plummer, WA, McCullars, K, Cato, AJ, Black, JL (2018) Evaluation of insecticide seed treatment combinations for control of rice water weevil, Lissorhoptrus oryzophilus. Pages 176 179 in Norman RJ, Moldenhauer KAK, eds. B.R. Wells Arkansas Rice Research Studies 2017, Research Series 651. Fayetteville, AR: University of Arkansas System, Division of Agriculture
Yates, WE, Akesson, NB, Bayer, DE (1978) Drift of glyphosate sprays applied with aerial and ground equipment. Weed Sci 26:597604
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Weed Technology
  • ISSN: 0890-037X
  • EISSN: 1550-2740
  • URL: /core/journals/weed-technology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed