Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-21T06:12:44.697Z Has data issue: false hasContentIssue false

Optical Parameters of Leaves of Seven Weed Species

Published online by Cambridge University Press:  12 June 2017

H. W. Gausman
Affiliation:
Univ. of Hohenheim, West Germany, Sponsored by Deutsche Forschungsgemeinschaft
R. M. Menges
Affiliation:
Univ. of Hohenheim, West Germany, Sponsored by Deutsche Forschungsgemeinschaft
A. J. Richardson
Affiliation:
Univ. of Hohenheim, West Germany, Sponsored by Deutsche Forschungsgemeinschaft
H. Walter
Affiliation:
Univ. of Hohenheim, West Germany, Sponsored by Deutsche Forschungsgemeinschaft
R. R. Rodriguez
Affiliation:
Univ. of Hohenheim, West Germany, Sponsored by Deutsche Forschungsgemeinschaft
S. Tamez
Affiliation:
Sci. Ed. Admin., U.S. Dep. Agric., Weslaco, TX 78596

Abstract

Absorption coefficient (k), infinite reflectance (Ri), and scattering coefficient (s) were tabulated for five wavelengths and analyzed for statistical differences for seven weed species. The wavelengths were: 0.55 μm, 0.65 μm, 0.85 μm, 1.65 μm, and 2.20 μm. The Ri of common lambsquarters (Chenopodium album L.), johnsongrass [Sorghum halepense (L.) Pers.], and annual sowthistle (Sonchus oleraceus L.) leaves at the 0.85-μm wavelength were significantly (p = 0.05) higher than for sunflower (Helianthus annuus L.), ragweed parthenium (Parthenium hysterophorus L.), or London rocket (Sisymbrium irio L.). Annual sowthistle had the largest k value, and Palmer amaranth (Amaranthus palmeri S. Wats.) had the smallest k value at the 0.65-μm chlorophyll absorption wavelength. In general, johnsongrass, ragweed parthenium, or London rocket had the largest s values among the five wavelengths, whereas annual sowthistle and Palmer amaranth were usually lowest.

Type
Research Article
Copyright
Copyright © 1981 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Allen, W. A. and Richardson, A. J. 1968. Interaction of light with a plant canopy. J. Opt. Soc. Am. 58:10231028.CrossRefGoogle Scholar
2. Allen, W. A., Gausman, H. W., Richardson, A. J., and Wiegand, C. L. 1970. Mean effective optical constants of thirteen kinds of plant leaves. Appl. Opt. 9:25732577.Google Scholar
3. Arkin, G. F., Ritchie, J. T., and Maas, S. J. 1978. A model for calculating light interrelation by a grain sorghum canopy. Trans. ASAE. 21:303308.Google Scholar
4. Arkin, G. F., Vanderlip, R. L., and Ritchie, J. T. 1976. A dynamic grain sorghum growth model. Trans. ASAE. 19:622630.CrossRefGoogle Scholar
5. Chance, J. E. and LeMaster, E. W. 1978. Plant canopy light absorption model with application to wheat. Appl. Opt. 17:26292636.Google Scholar
6. Gausman, H. W. and Allen, W. A. 1973. Optical parameters of leaves of 30 plant species. Plant Physiol. 32:5762.Google Scholar
7. Gausman, H. W., Allen, W. A., Schupp, M. L., Wiegand, C. L., Escobar, D. E., and Rodriguez, R. R. 1970. Reflectance, transmittance, and absorptance of light of leaves for 11 plant genera with different leaf mesophyll arrangements. Texas A&M Univ. Tech. Monograph No. 7. 38 pp.Google Scholar
8. Gausman, H. W., Allen, W. A., Wiegand, C. L., Escobar, D. E., Rodriguez, R. R., and Richardson, A. J. 1973. The leaf mesophyll of twenty crops, their light spectra, and optical and geometrical parameters. U.S. Dep. Agric. Tech. Bull. 1465. 59 pp.Google Scholar
9. Gausman, H. W., Menges, R. M., Escobar, D. E., Everitt, J. H., and Bowen, R. L. 1977. Pubescence affects spectra and imagery of silverleaf sunflower (Helianthus argophyllus . Weed Sci. 25:437440.Google Scholar
10. Heilman, M. D., Gonzalez, C. L., Swanson, W. A., and Rippert, W. J. 1968. Adaptation of a linear transducer for measuring leaf thickness. Agron. J. 60:578579.CrossRefGoogle Scholar
11. Richardson, A. J., Escobar, D. E., Gausman, H. W., and Everitt, J. H. 1980. Comparison of LANDSAT-2 and field spectrometer reflectance signatures of south Texas rangeland communities. Symp. on Machine Processing of Remotely Sensed Data. June 2–6.Google Scholar
12. Smith, J. A. and Oliver, R. E. 1972. Plant canopy models for simulating composite scene spectroradiance in the 0.4 to 1.05 micrometer region. Proc. Eighth Int. Symp. on Remote Sensing of Environ. 11:13331353.Google Scholar
13. Steel, R. G. D. and Torrie, J. H. 1960. Principles and Procedures of Statistics. McGraw-Hill Book Co., Inc., New York. 481 pp.Google Scholar
14. Suits, G. H. 1972. The calculation of the directional reflectance of a vegetative canopy. Remote Sensing Environ. 2:117125.CrossRefGoogle Scholar