Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-19T14:01:00.142Z Has data issue: false hasContentIssue false

Intraspecific variation in a new solitary rugose coral, Commutia exoleta, from the Lower Carboniferous of the Baoshan Block, Southwest China

Published online by Cambridge University Press:  20 May 2016

Xiang-Dong Wang
Affiliation:
1Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, People's Republic of China,
Sugiyama Tetsuo
Affiliation:
2Department of Earth System Science, Fukuoka University, Fukuoka 814-0180, Japan,
Feng Zhang
Affiliation:
1Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, People's Republic of China,

Abstract

Based on 137 specimens examined, the new species Commutia exoleta is characterized by a small, slightly scolecoid shape with 21 septa at a mean maximum corallite diameter of 6 mm (range 3 to 10.5 mm); a persistent inner wall, which encloses an aulos with a mean maximum diameter of 1.2 mm, formed during an early ontogenetic stage when the axial ends of the cardinal, alar and counter-lateral septa fused; short counter septa are lacking in the earliest stage of development.

Corallites are highly variable. Characters exhibiting a wide range of variation are: size and shape of corallites, number of septa, diameter of aulos and the timing of its appearance, number of septa connected to the inner wall, and the septal arrangement in each growth quadrant. Combinations of these variable characters result in corallites that are each uniquely different. Variations of those characters are partly due to stressed environments, such as unstable, muddy substrates resulting in corallite rejuvenescence and redirection.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Budd, A. F. 1993. Variation within and among morphospecies of Montastraea. Courier Forschungsinstitut Senckenberg, 164:241254.Google Scholar
Elias, R. J. 1982. Latest Ordovician solitary rugose corals of eastern North America. Bulletins of American Paleontology, 81(314):1116.Google Scholar
Elias, R. J. 1984. Paleobiology of solitary rugose corals, Late Ordovician of North America. Palaeontographica Americana, 54:533537.Google Scholar
Fedorowski, J. 1973. Rugose corals Polycoelaceae and Tachylasmatina subord. n. from Dalnia in the Holy Cross Mts. Acta Geologica Polonica, 23:89132.Google Scholar
Fedorowski, J. 1993. Intraspecific variability in two Upper Permian rugose coral species. Courier Forschungsinstitut Senckenberg, 164:255262.Google Scholar
Flügel, H. W. 1991. Rugosa aus dem Karbon der Ozbak-kuh-Gruppe Ost-Irans (Teil 1). Jahrbuch der Geologischen Bundesanstalt (Wien), 134:657688.Google Scholar
Foster, A. B. 1985. Variation within coral colonies and its importance for interpreting fossil species. Journal of Paleontology, 59:13591381.Google Scholar
Hill, D. 1981. Coelenterata, Pt. F, supplement 1, Rugosa and Tabulata, p. F1F762. In Teichert, C. (ed.), Treatise on Invertebrate Paleontology. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Ilina, T. G. 1984. Istoricheskoe razvitie korallov (podotriad Polycoeliina). Akademiia Nauk SSSR, Paleontologicheskii Institut, Trudy, 198:1184.Google Scholar
Koker, E. M. J. 1924. Anthozoa uit het Perm van het eiland Timor, I: Zaphrentidae, Plerophyllidae, Cystiphyllidae, Amphiastreidae. Jaarboek van het Mijnwezen in Nederlandsch-Oost-Indie, 51:150.Google Scholar
Kullmann, J., and Weihua, Liao. 1985. Cornute solitary corals (Rugosa) from the Lower Carboniferous of South China. Palaeontographica, 189:125157.Google Scholar
Metcalfe, I. 1996. Gondwanaland dispersion, Asian accretion and evolution of Eastern Tethys. Australian Journal of Earth Sciences, 43:605623.Google Scholar
Edwards, H. Milne, and Haime, J. 1850. A monograph of the British Fossil Corals, Pt. 1. Monograph of the Palaeontographical Society, 3(7):I–lxxxv+171.Google Scholar
Mori, K. 1987. Intraspecific morphological variations in a Pleistocene solitary coral, Caryophyllia (Premocyathus) compressa Yabe and Eguchi. Journal of Paleontology, 61:2131.Google Scholar
Neuman, B. E. E. 1988. Some aspects of life strategies of Early Palaeozoic rugose corals. Lethaia, 21:97114.Google Scholar
Pandolfi, J. M., and Burke, C. D. 1989. Environmental distribution of colony growth form in the favositid Pleurodictyum americanum. Lethaia, 22:6984.Google Scholar
Riley, N. J. 1990. A global review of mid-Dinantian ammonoid biostratigraphy. Courier Forschungsinstitut Senckenberg, 130:133144.Google Scholar
Schindewolf, O. H. 1942. Zur Kenntnis der Polycoelien und Plerophyllen. Abhandlungen des Reichsamtes fur Bodenforschung, 204:1324.Google Scholar
Scrutton, C. T. 1996. Ecophenotypic variation in the Early Silurian rugose coral Palaeocyclus porpita. Proceedings of the Yorkshire Geological Society, 51:18.Google Scholar
Scrutton, C. T. 1998. The Palaeozoic corals, II: structure, variation and palaeoecology. Proceedings of the Yorkshire Geologyical Society, 52, Pt. 1:157.Google Scholar
Sutherland, P. K. 1989. Intraspecific variability in the rugose coral Stelechophyllum (?) mclareni from the Lower Carboniferous (Visean) of northeastern British Columbia. Memoirs of the Association of Australasian Palaeontologists, 8:1322.Google Scholar
Sutherland, P. K. 1997. Intraspecific variation in a species of the colonial rugose coral Petalaxis, Middle Carboniferous, Oklahoma, USA. Boletin de la Real Sociedad Espanola de Historia Natural, Seccion Geologica, 91:117126.Google Scholar
Wang, Xiangdong, and Tetsuo, S. 2001. Middle Permian rugose corals from Laibin, Guangxi, South China. Journal of Paleontology, 75:758782.Google Scholar
Wang, Xiangdong, Tetsuo, S., and Runsen, Fang. 2001. Carboniferous and Permian coral faunas of West Yunnan, southwest China: implications for the Gondwana/Cathaysia divide. Bulletin of Tohoku University Museum, 1:265278.Google Scholar
Wang, Xiangdong, Ueno, K., Mizuno, Y., and Tetsuo, S. 2001. Late Paleozoic faunal, climatic, and geographic changes in the Baoshan block as a Gondwana-derived continental fragment in southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 170:197223.Google Scholar
Webb, G. E. 1984. Columella development in Lophophyllidium n. sp., and its taxonomic implications, Imo Formation, latest Mississippian, northern Arkansas. Palaeontographica Americana, 54:509514.Google Scholar
Webb, G. E. 1996. Morphological variation and homoplasy: the challenge of Paleozoic coral systematics. Paleontological Society Papers, 1:135157.Google Scholar
Webster, G., and Groessens, E. 1990. Conodont subdivision of the Lower Carboniferous. Courier Forschungsinstitut Senckenberg, 130:3140.Google Scholar
Weyer, D. 1994. Korallen im Untertournai-Profil von Drewer (Rheinisches Schiefergebirge). Geologie und Palaontologie in Westfalen, 29:177221.Google Scholar
Wrzolek, T. 1993. Variability in the Devonian tetracoral Phillipsastrea lacunose (Gürich). Courier Forschungsinstitut Senckenberg, 164:293300.Google Scholar
Young, G. A., and Elias, R. J. 1993. Biometry and intraspecific variation in favositid and heliolitid corals. Courier Forschungsinstitut Senckenberg, 164:283291.Google Scholar