Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-29T18:15:46.288Z Has data issue: false hasContentIssue false

On the reconstruction of unknown driving forces from low-mode observations in the 2D Navier–Stokes equations

Published online by Cambridge University Press:  01 April 2024

Vincent R. Martinez*
Affiliation:
Department of Mathematics & Statistics, CUNY Hunter College, New York, NY, USA Department of Mathematics, New York, NY, CUNY Graduate Center, USA (vrmartinez@hunter.cuny.edu)

Abstract

This article is concerned with the problem of determining an unknown source of non-potential, external time-dependent perturbations of an incompressible fluid from large-scale observations on the flow field. A relaxation-based approach is proposed for accomplishing this, which makes use of a nonlinear property of the equations of motions to asymptotically enslave small scales to large scales. In particular, an algorithm is introduced that systematically produces approximations of the flow field on the unobserved scales in order to generate an approximation to the unknown force; the process is then repeated to generate an improved approximation of the unobserved scales, and so on. A mathematical proof of convergence of this algorithm is established in the context of the two-dimensional Navier–Stokes equations with periodic boundary conditions under the assumption that the force belongs to the observational subspace of phase space; at each stage in the algorithm, it is shown that the model error, represented as the difference between the approximating and true force, asymptotically decreases to zero in a geometric fashion provided that sufficiently many scales are observed and certain parameters of the algorithm are appropriately tuned.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albanez, D. A. F. and Benvenutti, M. J.. Continuous data assimilation algorithm for simplified bardina model. Evol. Equ. Control Theory 7 (2018), 3352.CrossRefGoogle Scholar
Albanez, D. A. F., Nussenzveig Lopes, H. J. and Titi, E. S.. Continuous data assimilation for the three-dimensional Navier–Stokes-$\alpha$ model. Asymptotic Anal. 97 (2016), 139164.CrossRefGoogle Scholar
Altaf, M. U., Titi, E. S., Gebrael, T., Knio, O. M., Zhao, L. and McCabe, M. F.. Downscaling the 2D Bénard convection equations using continuous data assimilation. Comput. Geosci. 21 (2017), 393410.CrossRefGoogle Scholar
Azouani, A., Olson, E. J. and Titi, E. S.. Continuous data assimilation using general interpolant observables. J. Nonlinear Sci. 24 (2014), 277304.CrossRefGoogle Scholar
Balci, N., Foias, C. and Jolly, M. S.. 2-D turbulence for forcing in all scales. J. Math. Pures Appl. 94 (2010), 132.CrossRefGoogle Scholar
Berselli, L. C., Iliescu, T. and Layton, W. J.. Mathematics of large eddy simulation of turbulent flows. Scientific Computation (Berlin: Springer-Verlag, 2006).Google Scholar
Bessaih, H., Olson, E. J. and Titi, E. S.. Continuous data assimilation with stochastically noisy data. J. Nonlinear Sci. 28 (2015), 729753.CrossRefGoogle Scholar
Biswas, A., Brown, K. R. and Martinez, V. R.. Higher-order synchronization and a refined paradigm for global interpolant observables. Ann. Appl. Math. 38 (2022), 160.Google Scholar
Biswas, A. and Hudson, J.. Determining the viscosity of the Navier–Stokes equations from observations of finitely many modes. Inverse Probl. 39 (2023), 125012.CrossRefGoogle Scholar
Biswas, A. and Martinez, V. R.. Higher-order synchronization for a data assimilation algorithm for the 2D Navier–Stokes equations. Nonlinear Anal. Real World Appl. 35 (2017), 132157.CrossRefGoogle Scholar
Biswas, A. and Price, R.. Continuous data assimilation for the three-dimensional Navier–Stokes equations. SIAM J. Math. Anal. 53 (2021), 66976723.CrossRefGoogle Scholar
Blömker, D., Law, K., Stuart, A. M. and Zygalakis, K. C.. Accuracy and stability of the continuous-time 3DVAR filter for the Navier–Stokes equation. Nonlinearity 26 (2013), 21932219.CrossRefGoogle Scholar
Blocher, J., Martinez, V. R. and Olson, E.. Data assimilation using noisy time-averaged measurements. Physica D 376-377 (2018), 4959. Special Issue: Nonlinear Partial Differential Equations in Mathematical Fluid Dynamics.CrossRefGoogle Scholar
Cao, Y., Jolly, M. S., Titi, E. S. and Whitehead, J. P.. Algebraic bounds on the Rayleigh–Bénard attractor. Nonlinearity 34 (2021), 509531.CrossRefGoogle Scholar
Carlson, E., Hudson, J. and Larios, A.. Parameter recovery for the 2 dimensional Navier–Stokes equations via continuous data assimilation. SIAM J. Sci. Comput. 42 (2020), A250A270.CrossRefGoogle Scholar
Carlson, E., Hudson, J., Larios, A., Martinez, V. R., Ng, E. and Whitehead, J. P.. Dynamically learning the parameters of a chaotic system using partial observations. Discrete Contin. Dyn. Syst. 42 (2022), 38093839.CrossRefGoogle Scholar
Carlson, E. and Larios, A.. Sensitivity analysis for the 2D Navier–Stokes equations with applications to continuous data assimilation. J. Nonlinear Sci. 31 (2021), 84.CrossRefGoogle Scholar
Celik, E., Olson, E. and Titi, E. S.. Spectral filtering of interpolant observables for a discrete-in-time downscaling data assimilation algorithm. SIAM J. Appl. Dyn. Syst. 18 (2019), 11181142.CrossRefGoogle Scholar
Chen, N., Li, Y. and Lunasin, E.. An efficient continuous data assimilation algorithm for the Sabra shell model of turbulence. Chaos 31 (2021), 103123.CrossRefGoogle ScholarPubMed
Cheskidov, A. and Dai, M.. Kolmogorov's dissipation number and the number of degrees of freedom for the 3D Navier–Stokes equations. Proc. R. Soc. Edinburgh 149 (2019), 429446.CrossRefGoogle Scholar
Cialenco, I. and Glatt-Holtz, N.. Parameter estimation for the stochastically perturbed Navier–Stokes equations. Stochastic Process. Appl. 121 (2011), 701724.CrossRefGoogle Scholar
Clark Di Leoni, P., Mazzino, A. and Biferale, L.. Inferring flow parameters and turbulent configuration with physics-informed data assimilation and spectral nudging. Phys. Rev. Fluids 3 (2018), 104604.CrossRefGoogle Scholar
Clark Di Leoni, P., Mazzino, A. and Biferale, L.. Synchronization to big data: nudging the Navier–Stokes equations for data assimilation of turbulent flows. Phys. Rev. X 10 (2020), 011023.Google Scholar
Cockburn, B., Jones, D. A. and Titi, E. S.. Determining degrees of freedom for nonlinear dissipative equations. C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), 563568.Google Scholar
Cockburn, B., Jones, D. A. and Titi, E. S.. Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems. Math. Comput. 66 (1997), 10731087.CrossRefGoogle Scholar
Constantin, P. and Foias, C.. Navier–Stokes equations. Chicago Lectures in Mathematics (Chicago, IL: University of Chicago Press, 1988).CrossRefGoogle Scholar
Dascaliuc, R., Foias, C. and Jolly, M. S.. Relations between energy and enstrophy on the global attractor of the 2-D Navier–Stokes equations. J. Dyn. Differ. Equ. 17 (2005), 643736.CrossRefGoogle Scholar
Dascaliuc, R., Foias, C. and Jolly, M. S.. Some specific mathematical constraints on 2D turbulence. Physica D 237 (2008), 30203029.CrossRefGoogle Scholar
Dascaliuc, R., Foias, C. and Jolly, M. S.. On the asymptotic behavior of average energy and enstrophy in 3D turbulent flows. Physica D 238 (2009), 725736.CrossRefGoogle Scholar
Desamsetti, S., Dasari, H. P., Langodan, S., Titi, E. S., Knio, O. and Hoteit, I.. Efficient dynamical downscaling of general circulation models using continuous data assimilation. Q. J. R. Meteorol. Soc. 145 (2019), 31753194.CrossRefGoogle Scholar
Diegel, A. E. and Rebholz, L. G.. Continuous data assimilation and long-time accuracy in a $C^0$ interior penalty method for the Cahn–Hilliard equation. Appl. Math. Comput. 424 (2022), 127042.Google Scholar
Farhat, A., Glatt-Holtz, N. E., Martinez, V. R., McQuarrie, S. A. and Whitehead, J. P.. Data assimilation in large Prandtl Rayleigh–Bénard convection from thermal measurements. SIAM J. Appl. Dyn. Syst. 19 (2020), 510540.CrossRefGoogle Scholar
Farhat, A., Johnston, H., Jolly, M. S. and Titi, E. S.. Assimilation of nearly turbulent Rayleigh–Bénard flow through vorticity or local circulation measurements: a computational study. J. Sci. Comput. 77 (2018), 115.CrossRefGoogle Scholar
Farhat, A., Jolly, M. S. and Titi, E. S.. Continuous data assimilation for the 2D Bénard convection through velocity measurements alone. Physica D 303 (2015), 5966.CrossRefGoogle Scholar
Farhat, A., Lunasin, E. and Titi, E. S.. Data assimilation algorithm for 3D Bénard convection in porous media employing only temperature measurements. J. Math. Anal. Appl. 438 (2016), 492506.CrossRefGoogle Scholar
Farhat, A., Lunasin, E. and Titi, E. S.. On the Charney conjecture of data assimilation employing temperature measurements alone: the paradigm of 3D planetary geostrophic model. Math. Clim. Weather Forecast. 2 (2016), 6174.Google Scholar
Farhat, A., Lunasin, E. and Titi, E. S.. Continuous data assimilation for a 2D Bénard convection system through horizontal velocity measurements alone. J. Nonlinear Sci. 27 (2017), 10651087.CrossRefGoogle Scholar
Farhat, A., Lunasin, E. and Titi, E. S.. A data assimilation algorithm: the paradigm of the 3D Leray- $\alpha$ model of turbulence. In Nonlinear Partial Differential Equations Arising from Geometry and Physics. London Mathematical Society. Lecture Notes Series (Singapore: Cambridge University Press, 2017).Google Scholar
Foias, C., Jolly, M. S., Kravchenko, R. and Titi, E. S.. A determining form for the two-dimensional Navier–Stokes equations: the Fourier modes case. J. Math. Phys. 53 (2012), 115623.CrossRefGoogle Scholar
Foias, C., Jolly, M. S., Lithio, D. and Titi, E. S.. One-dimensional parametric determining form for the two-dimensional Navier–Stokes equations. J. Nonlinear Sci. 27 (2017), 15131529.CrossRefGoogle Scholar
Foias, C., Manley, O., Rosa, R. and Temam, R.. Navier–Stokes equations and turbulence. Encyclopedia of Mathematics and its Applications, vol. 83 (Cambridge: Cambridge University Press, 2001).CrossRefGoogle Scholar
Foias, C., Mondaini, C. and Titi, E. S.. A discrete data assimilation scheme for the solutions of the 2D Navier–Stokes equations and their statistics. SIAM J. Appl. Dyn. Syst. 15 (2016), 20192142.CrossRefGoogle Scholar
Foias, C., Nicolaenko, B., Sell, G. R. and Temam, R.. Inertial manifolds for the Kuramoto–Sivashinsky equation and an estimate of their lowest dimension. J. Math. Pures Appl. 67 (1988), 197226.Google Scholar
Foiaş, C. and Prodi, G.. Sur le comportement global des solutions non-stationnaires des équations de Navier–Stokes en dimension 2. Rend. Sem. Mat. Univ. Padova 39 (1967), 134.Google Scholar
Foias, C., Sell, G. R. and Temam, T.. Inertial manifolds for nonlinear evolutionary equations. J. Differ. Equ. 73 (1988), 309353.CrossRefGoogle Scholar
Foias, C. and Temam, R.. Determination of the solutions of the Navier–Stokes equations by a set of nodal values. Math. Comput. 43 (1984), 117133.CrossRefGoogle Scholar
Foias, C. and Temam, R.. The connection between the Navier–Stokes equations, dynamical systems, and turbulence theory. In Directions in Partial Differential Equations (Madison, WI, 1985). Publ. Math. Res. Center Univ. Wisconsin, vol. 54, pp. 55–73 (Boston, MA: Academic Press, 1987).CrossRefGoogle Scholar
García-Archilla, B. and Novo, J.. Error analysis of fully discrete mixed finite element data assimilation schemes for the Navier–Stokes equations. Adv. Comput. Math. 46 (2020), 61.CrossRefGoogle Scholar
García-Archilla, B., Novo, J. and Titi, E. S.. Uniform in time error estimates for a finite element method applied to a downscaling data assimilation algorithm for the Navier–Stokes equations. SIAM J. Numer. Anal. 58 (2020), 410429.CrossRefGoogle Scholar
Gesho, M., Olson, E. J. and Titi, E. S.. A computational study of a data assimilation algorithm for the two-dimensional Navier–Stokes equations. Commun. Comput. Phys. 19 (2016), 10941110.CrossRefGoogle Scholar
Ibdah, H. A., Mondaini, C. F. and Titi, E. S.. Fully discrete numerical schemes of a data assimilation algorithm: uniform-in-time error estimates. IMA J. Numer. Anal. 40 (2019), 25842625.CrossRefGoogle Scholar
Jolly, M. S., Martinez, V. R., Olson, E. J. and Titi, E. S.. Continuous data assimilation with blurred-in-time measurements of the surface quasi-geostrophic equation. Chin. Ann. Math. Ser. B 40 (2019), 721764.CrossRefGoogle Scholar
Jolly, M. S., Martinez, V. R. and Titi, E. S.. A data assimilation algorithm for the 2D subcritical surface quasi-geostrophic equation. Adv. Nonlinear Stud. 35 (2017), 167192.CrossRefGoogle Scholar
Jolly, M. S., Sadigov, T. and Titi, E. S.. A determining form for the damped driven nonlinear Schrödinger equation–Fourier modes case. J. Differ. Equ. 258 (2015), 27112744.CrossRefGoogle Scholar
Jolly, M. S., Sadigov, T. and Titi, E. S.. Determining form and data assimilation algorithm for weakly damped and driven Korteweg–De Vries equation – Fourier modes case. Nonlinear Anal. Real World Appl. 36 (2017), 287317.CrossRefGoogle Scholar
Jones, D. A. and Titi, E. S.. Determining finite volume elements for the 2D Navier–Stokes equations. Physica D 60 (1992), 165174.CrossRefGoogle Scholar
Jones, D. A. and Titi, E. S.. On the number of determining nodes for the 2D Navier–Stokes equations. J. Math. Anal. 168 (1992), 7288.CrossRefGoogle Scholar
Larios, A. and Pei, Y.. Approximate continuous data assimilation of the 2D Navier–Stokes equations via the Voigt-regularization with observable data. Evol. Equ. Control Theory 9 (2020), 733751.CrossRefGoogle Scholar
Larios, A., Rebholz, L. G. and Zerfas, C.. Global in time stability and accuracy of IMEX-FEM data assimilation schemes for Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 345 (2019), 10771093.CrossRefGoogle Scholar
Marchioro, C.. An example of absence of turbulence for any Reynolds number. I. Commun. Math. Phys. 105 (1986), 99106.CrossRefGoogle Scholar
Martinez, V. R.. Convergence analysis of a viscosity parameter recovery algorithm for the 2D Navier–Stokes equations. Nonlinearity 35 (2022), 22412287.CrossRefGoogle Scholar
Mondaini, C. F. and Titi, E. S.. Uniform-in-time error estimates for the postprocessing Galerkin method applied to a data assimilation algorithm. SIAM J. Numer. Anal. 56 (2018), 78110.CrossRefGoogle Scholar
Pachev, B., Whitehead, J. P. and McQuarrie, S. A.. Concurrent multi-parameter learning demonstrated on the Kuramoto–Sivashinsky equation (2021).CrossRefGoogle Scholar
Pei, Y.. Continuous data assimilation for the 3D primitive equations of the ocean. Commun. Pure Appl. Anal. 18 (2019), 643661.CrossRefGoogle Scholar
Temam, R.. Navier–Stokes Equations: Theory and Numerical Analysis, Reprint of the 1984 edn (Providence, RI: AMS Chelsea Publishing, 2001).Google Scholar
Temam, R.. Infinite-dimensional dynamical systems in mechanics and physics, 2nd edn. Applied Mathematical Sciences, vol. 68 (New York: Springer-Verlag, 1997).CrossRefGoogle Scholar
Yu, C., Giorgini, A., Jolly, M. S. and Pakzad, A.. Continuous data assimilation for the 3D Ladyzhenskaya model: analysis and computations. Nonlinear Anal.: Real World Appl. 68 (2022), 103659.Google Scholar
Zauner, M., Mons, V., Marquet, O. and Leclaire, B.. Nudging-based data assimilation of the turbulent flow around a square cylinder. J. Fluid Mech. 937 (2022), A38.CrossRefGoogle Scholar