Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-12T21:33:04.628Z Has data issue: false hasContentIssue false

Paleoecology of commensal epizoans fouling Flexicalymene (Trilobita) from the Upper Ordovician, Cincinnati Arch region, USA

Published online by Cambridge University Press:  14 July 2015

Marcus M. Key Jr.
Affiliation:
1Department of Earth Sciences, Dickinson College, P.O. Box 1773, Carlisle, Pennsylvania 17013-2896, USA,
Gregory A. Schumacher
Affiliation:
2Ohio Department of Natural Resources, Division of Geological Survey, 3307 South Old State Road, Delaware, Ohio 43015, USA
Loren E. Babcock
Affiliation:
3School of Earth Sciences, The Ohio State University, 125 South Oval Mall, Columbus, Ohio 43210, USA
Robert C. Frey
Affiliation:
4Ohio Department of Health, Bureau of Environmental Health, 246 N. High Street, Columbus, Ohio 43215, USA
William P. Heimbrock
Affiliation:
51621 Westwood Avenue, Cincinnati, Ohio 45214, USA
Stephen H. Felton
Affiliation:
65678 Biscayne Avenue, Cincinnati, Ohio 45248, USA
Dan L. Cooper
Affiliation:
75170 Dee Alva Drive, Fairfield, Ohio 45014, USA
Walter B. Gibson
Affiliation:
810047 Lakeside Drive, Cincinnati, Ohio 45231, USA
Debbie G. Scheid
Affiliation:
92863 Hanois Court, Cincinnati, Ohio 45251, USA
Sylvester A. Schumacher
Affiliation:
103532 Glaser Drive, Kettering, Ohio 45429, USA

Abstract

Commensal epizoozoans and episkeletozoans are rarely preserved attached to the external exoskeleton of the Late Ordovician trilobite Flexicalymene. Of nearly 15,000 Flexicalymene specimens examined, 0.1% show epizoozoans or episkeletozoans. Factors limiting Flexicalymene fouling include a shallow burrowing life style, frequent molting of the host, larval preference for other substrates, observational bias caused by overlooking small fouling organisms, and the loss of the non-calcified, outermost cuticle prior to fossilization or as the trilobite weathers from the encasing sediment. Trepostome bryozoans, articulate and inarticulate brachiopods, cornulitids, and a tube-dwelling/boring nonbiomineralized organism represent the preserved members of the Late Ordovician marine hard substrate community fouling Flexicalymene. This assemblage of organisms is less diverse than the hard substrate community fouling Late Ordovician sessile epibenthic organisms. Fouling is not restricted to only large Flexicalymene specimens as observed in previous studies but occurs in medium to large individuals interpreted as early to late holaspid specimens.

Epizoozoans fouling the carcasses or molt ensembles of 16 Flexicalymene specimens provide insight into the life habits of the host and these fouling organisms. Trepostome bryozoans, articulate and inarticulate brachiopods, and cornulitids preferentially attached to elevated portions of the dorsal exoskeleton, and preferentially aligned in either the direct line or lee side of currents generated by Flexicalymene walking on the sea floor or swimming through the water column.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, R. R. and Brett, C. E. 1990. Symposium on Paleozoic epibionts: Introduction. Historical Biology, 4:151153.CrossRefGoogle Scholar
Alexander, R. R. and Scharpf, C. D. 1990. Epizoans on Late Ordovician brachiopods from southeastern Indiana. Historical Biology, 4:179202.CrossRefGoogle Scholar
Babcock, L. E. 2003. Trilobites in Paleozoic predator-prey systems, and their role in reorganization of early Paleozoic ecosystems, p. 5592. In Kelley, P. H., Kowalewski, M., and Hansen, T. A. (eds.), Predator-prey interactions in the fossil record. Kluwer Academic/Plenum, New York.CrossRefGoogle Scholar
Babcock, L. E. 2005. Phylum Arthropoda, class Trilobita, p. 90113. In Feldmann, R. M., and Hackathorn, M. (eds.), Fossils of Ohio. Ohio Division of Geological Survey Bulletin, 70.Google Scholar
Baird, G. C., Brett, C. E., and Frey, R. C. 1989. “Hitchhiking” epizoans on orthoconic cephalopods: Preliminary review of the evidence and its implications. Senckenbergiana Lethaea, 69:439465.Google Scholar
Becker, K. and Wahl, M. 1996. Behavior patterns as natural anti-fouling mechanisms of tropical marine crabs. Journal of Experimental Marine Biology and Ecology, 203:245258.CrossRefGoogle Scholar
Bergström, S. M., Finney, S. C., Chen, X., Goldman, D., and Leslie, S. A. 2006. Three new Ordovician global stage names. Lethaia, 39:287288.CrossRefGoogle Scholar
Bergström, S. M., Chen, X., Gutiérrez-Marco, J. C., and Dronov, A. 2009. The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to δ13C chemostratigraphy. Lethaia, 42:97107.CrossRefGoogle Scholar
Bigsby, J. J. 1825. Description of a new species of trilobite. Journal of the Academy of Natural Sciences of Philadelphia, 4:365368.Google Scholar
Brandt, D. S. 1985. Ichnologic, taphonomic, and sedimentologic clues to the deposition of Cincinnatian shales (Upper Ordovician), Ohio, U.S.A., p. 299307. In Curran, H. A. (ed.), Biogenic Structures: Their use in interpreting depositional environments. SEPM Special Publication 35.Google Scholar
Brandt, D. S. 1993. Ecdysis in Flexicalymene meeki (Trilobita). Journal of Paleontology, 67:9991005.CrossRefGoogle Scholar
Brandt, D. S. 1996. Epizoans on Flexicalymene (Trilobita) and implications for trilobite paleoecology. Journal of Paleontology, 70:442449.CrossRefGoogle Scholar
Brett, C. E. and Taylor, W. L. 1997. The Homocrinus Beds: Silurian crinoid lagerstätten of western New York and southern Ontario, p. 181223. In Brett, C. E., and Baird, G. C. (eds.), Paleontological events: Stratigraphic, ecological, and evolutionary implications. Columbia University Press, New York.Google Scholar
Brown, G. D. Jr. and Lineback, J. A. 1966. Lithostratigraphy of the Cincinnatian Series (Upper Ordovician) in southeastern Indiana. American Association of Petroleum Geologists Bulletin, 50:10181023.Google Scholar
Budil, P. and Saric, R. 1995. Cemented epibionts on the exoskeleton of the odontopleurid trilobite Selenopeltis vultuosa tenyl Šnajdr, 1984. Vēstník českého Geologického Ústavu, 70:2931.Google Scholar
Campbell, K. S. W. 1977. Trilobites of the Haragan, Bois d'Arc and Frisco Formations (Early Devonian), Arbuckle Mountains region, Oklahoma. Bulletin Oklahoma Geological Survey, 123:1227.Google Scholar
Caster, K. E. 1961. Field trip 7: Sunday all-day field excursion in the Cincinnati region, p. 255257. In Guidebook for field trips, Cincinnati meeting. Geological Society of America.Google Scholar
Caster, K. E., Dalvé, E. A., and Pope, J. K. 1961. Elementary guide to the fossils and strata of the Ordovician in the vicinity of Cincinnati, Ohio. Cincinnati Museum of Natural History, 47 p.Google Scholar
Chatterton, B. D. E., Edgecombe, G. D., Speyer, S. E., Hunt, A. S., and Fortey, R. A. 1994. Ontogeny and relationships of Trinucleoidea (Trilobita). Journal of Paleontology, 68:523540.CrossRefGoogle Scholar
Clarkson, E. N. K. and Tripp, R. P. 1982. The Ordovician trilobite Calyptaulax brongniartii (Portland). Transactions of the Royal Society of Edinburgh (Earth Sciences), 72:287294.CrossRefGoogle Scholar
Clarkson, E. N. K., Ahlgren, J., and Taylor, C. M. 2003. Structure, ontogeny, and moulting of the olenid trilobite Ctenopyge (Eoctenopyhe) angusta Westergard, 1922 from the Upper Cambrian of Vastergotland, Sweden. Palaeontology, 46:227.CrossRefGoogle Scholar
Dalingwater, J. E., Hutchinson, S. J., Mutvei, H., and Siveter, D. J. 1993. Cuticular ultrastructure of some Silurian calymenid trilobites from the Welsh Borderland and Gotland. Palaeontographica, Abteilung A (Palaeozoologie-Stratigraphie), 229:3749.Google Scholar
Dekay, J. E. 1824. Observations on the structure of trilobites, and descriptions of an apparently new genus. With notes on the geology of Trenton Falls by J. Renwick. Annals of the Lyceum of Natural History of New York, 1:174189.Google Scholar
English, A. M. and Babcock, L. E. 2007. Feeding behaviour of two Ordovician trilobites inferred from trace fossils and nonbiomineralised anatomy, Ohio and Kentucky, USA. Memoirs of the Association of Australasian Palaeontologists, 34:537544.Google Scholar
Erickson, J. M. and Bouchard, T. D. 2003. Description and interpretation of Sanctum laurentiensis, new ichnogenus and ichnospecies, a domichnium mined into late Ordovician (Cincinnatian) ramose bryozoan colonies. Journal of Paleontology, 77:10021010.2.0.CO;2>CrossRefGoogle Scholar
Ferree, R. A. 1994. Taphonomy, paleoecology, and depositional environment of a trilobite lagerstätten, Mount Orab, Ohio. Unpublished , University of Cincinnati, 98 p.Google Scholar
Flower, R. H. 1946. Ordovician cephalopoda of the Cincinnati region. Pt. I. Bulletins of American Paleontology, 29:83738.Google Scholar
Foerste, A. F. 1909a. Fossils from the Silurian formations of Tennessee, Indiana, and Kentucky. Denison University Science Laboratories Bulletin, 14:61107.Google Scholar
Foerste, A. F. 1909b. Preliminary notes on Cincinnatian and Lexington fossils. Denison University Science Laboratories Bulletin, 14:289334.Google Scholar
Foerste, A. F. 1910. Preliminary notes on Cincinnatian and Lexington fossils of Ohio, Indiana, Kentucky, and Tennessee. Denison University Science Laboratories Bulletin, 16:17100.Google Scholar
Fortey, R. A. and Owens, R. M. 1999. Feeding habits in trilobites. Palaeontology, 42:429465.CrossRefGoogle Scholar
Frey, R. C. 1987a. The occurrence of pelecypods in Early Paleozoic epeiric-sea environments, Late Ordovician of the Cincinnati, Ohio area. Palaios, 2:323.CrossRefGoogle Scholar
Frey, R. C. 1987b. The paleoecology of a Late Ordovician shale unit from southwest Ohio and southeastern Indiana. Journal of Paleontology, 61:242267.CrossRefGoogle Scholar
Frey, R. C. 1997. The utility of epiboles in the regional correlation of Paleozoic epeiric sea strata: an example from the Upper Ordovician of Ohio and Indiana, p. 335368. In Brett, C. E. and Baird, G. C. (eds.), Paleontological Events: Stratigraphic, Ecological, and Evolutionary Implications. Columbia University Press, New York.Google Scholar
Galle, A. and Parsley, R. L. 2005. Epibiont relationships on hyolithids demonstrated by Ordovician trepostomes (Bryozoa) and Devonian tabulates (Anthozoa). Bulletin of Geosciences, 80:125138.Google Scholar
Gili, J. M., Abello, P., and Villanueva, R. 1993. Epibionts and intermoult duration in the crab Bathynectes piperitus. Marine Ecology Progress Series, 98:107113.CrossRefGoogle Scholar
Gray, N. L., Banta, W. C., and Loeb, G. I. 2002. Aquatic biofouling larvae respond to differences in the mechanical properties of the surface on which they settle. Biofouling, 18:269273.CrossRefGoogle Scholar
Hall, J. 1847. Palaeontology of New York. Vol. 1. Containing Descriptions of the Organic Remains of the Lower Division of the New York System (Equivalent of the Lower Silurian Rocks of Europe). Natural History of New York, State of New York, Albany, 338 p.Google Scholar
Hall, J. 1852. Palaeontology of New York. Vol. 2. State of New York, Albany, 362 p.Google Scholar
Hall, J. 1860. Contributions to palaeontology, 1858 and 1859. Annual report of the Regents of the University, on the condition of the New York State Cabinet of Natural History, 13:53125.Google Scholar
Hall, J. 1868. New or little known species of fossils from rocks of the age of the Niagara Group. Annual report of the Regents of the University, on the condition of the New York State Cabinet of Natural History, 20:347438.Google Scholar
Hall, J. 1888. Palaeontology of New York. Vol. 7. Supplement containing descriptions and illustrations of Pteropoda, Cephalopoda and Annelida. Geological Survey of the State of New York, C. van Benthuysen and Sons Albany, 42.Google Scholar
Harrington, H. J., Henningsmoen, G., Howell, B. F., Jaanusson, V., Lochman-Balk, C., Moore, R. C., Poulsen, C., Rasetti, F., Richter, E., Richter, R., Schmidt, H., Sdzuy, K., Struve, W., Størmer, L., Stubblefield, C. J., Tripp, R., Weller, J. M., and Whittington, H. B. 1959. Arthropoda 1, Trilobitomorpha. Pt. O. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology. Geological Society of America, New York, and University of Kansas Press, Lawrence.Google Scholar
Hattin, D. E., Nosow, E., Perkins, R. D., Stumm, E. C., Mound, M. C., and Utgaard, J. 1961. Field trip 9: field excursion to the Falls of the Ohio, p. 295350. In Guidebook for field trips, Cincinnati meeting. Geological Society of America.Google Scholar
Holland, S. M. and Patzkowsky, M. E. 1996. Sequence stratigraphy and long-term paleoceanographic change in the Middle and Upper Ordovician of the eastern United States, p. 117129. In Witzke, B. J., Ludvigson, G. A., and Day, J. (eds.), Paleozoic sequence stratigraphy: Views from the North American Craton. Geological Society of America Special Paper 306.Google Scholar
Holland, S. M. and Patzkowsky, M. E. 2007. Gradient ecology of a biotic invasion: Biofacies of the type Cincinnatian Series (Upper Ordovician), Cincinnati, Ohio region, USA. Palaios, 22:392407.CrossRefGoogle Scholar
Hughes, N. C. and Cooper, D. L. 1999. Paleobiologic and taphonomic aspects of the “granulosa” trilobite cluster, Kope Formation (Upper Ordovician, Cincinnati region). Journal of Paleontology, 72:306319.CrossRefGoogle Scholar
Hunda, B. R. and Hughes, N. C. 2006. Evaluating paedomorphic heterochrony in trilobites: The case of the diminutive trilobite Flexicalymene retrorsa minuens from the Cincinnatian Series (Upper Ordovician), Cincinnati region. Evolution & Development, 9:483498.CrossRefGoogle Scholar
Hunda, B. R., Hughes, N. C., and Flessa, K. W. 2006. Trilobite taphonomy and temporal resolution in the Mt. Orab shale bed (Upper Ordovician, Ohio, U.S.A.). Palaios, 21:2645.CrossRefGoogle Scholar
Hunt, A. S. 1967. Growth, variation, and instar development of an agnostid trilobite. Journal of Paleontology, 41:203208.Google Scholar
Kácha, P. and Šaric, R. 1995. Bryozoans attached to exuvia of the Ordovician trilobite Dalmanitina (D.) proeva. Vestnik Ceského Geologického Ustavu, 70:4346.Google Scholar
Kácha, P. and Šaric, R. 2009. Host preferences in Late Ordovician (Sandbian) epibenthic bryozoans: example from the Zahořany Formation of Prague Basin. Bulletin of Geosciences, 8(1):169178.CrossRefGoogle Scholar
Kesling, R. V. and Chilman, R. B. 1975. Strata and megafossils of the Middle Devonian Silica Formation. University of Michigan Papers on Paleontology, 8, 408 p.Google Scholar
Key, M. M. Jr., Jeffries, W. B., and Voris, H. K. 1995. Epizoic bryozoans, sea snakes, and other nektonic substrates. Bulletin of Marine Science, 56:462474.Google Scholar
Key, M. M. Jr., Jeffries, W. B., Voris, H. K., and Yang, C. M. 1996a. Epizoic bryozoans, horseshoe crabs, and other mobile benthic substrates. Bulletin of Marine Science, 58:368384.Google Scholar
Key, M. M. Jr., Jeffries, W. B., Voris, H. K., and Yang, C. M. 1996b. Epizoic bryozoans and mobile ephemeral host substrata, p. 157165. In Gordon, D. P., Smith, A. M., and Grant-Mackie, J. A. (eds.), Bryozoans in space and time. National Institute of Water and Atmospheric Research, Wellington, New Zealand.Google Scholar
Key, M. M. Jr., Volpe, J. W., Jeffries, W. B., and Voris, H. K. 1997. Barnacle fouling of the blue crab Callinectes sapidus at Beaufort, North Carolina. Journal of Crustacean Biology, 17:424439.CrossRefGoogle Scholar
Key, M. M. Jr. and Barnes, D. K. A. 1999. Bryozoan colonization of the marine isopod Glyptonotus antarcticus at Signy Island, Antarctica. Polar Biology, 21:4855.Google Scholar
Key, M. M. Jr., Winston, J. E., Volpe, J. W., Jeffries, W. B., and Voris, H. K. 1999. Bryozoan fouling of the blue crab, Callinectes sapidus, at Beaufort, North Carolina. Bulletin of Marine Science, 64:513533.Google Scholar
Key, M. M. Jr., Jeffries, W. B., Voris, H. K., and Yang, C. M. 2000. Bryozoan fouling pattern on the horseshoe crab Tachypleus gigas (Müller) from Singapore, p. 265271. In Herrera, A.C. and Jackson, J. B. C. (eds.), Proceedings of the 11th International Bryozoology Association Conference. Smithsonian Tropical Research Institute, Balboa, Panama.Google Scholar
Kitamura, H. and Hirayama, K. 1987. Effect of cultured diatom films on the settlement of larvae of a bryozoan Bugula neritina. Bulletin of the Japanese Society of Scientific Fisheries, 53:13831385.CrossRefGoogle Scholar
Kloc, G. J. 1992. Spine function in the odontopleurid trilobites Leonaspis and Dicranurus form the Devonian of Oklahoma. Fifth North American Paleontological Convention Abstracts and Program. Paleontological Society Special Publication, 6:167.Google Scholar
Kloc, G. J. 1993. Epibionts on Selenopeltinae (Odontopleurida) trilobites. Geological Society of America Abstracts with Programs, 25(6):103.Google Scholar
Kloc, G. J. 1997. Epibionts on Dicranurus and some related genera. Second International Trilobite Conference Abstracts with Program, St. Catharines, Ontario, p. 28.Google Scholar
Lescinsky, H. 1996. Don't overlook the epibionts. Palaios, 11:495496.CrossRefGoogle Scholar
Martin, W. D. 1975. The petrology of a composite vertical section of Cincinnatian Series limestones (Upper Ordovician) of southwestern Ohio, southeastern Indiana, and northern Kentucky. Journal of Sedimentary Petrology, 45:907925.Google Scholar
Meyer, D. L. 1990. Population paleoecology and comparative taphonomy of two edrioasteroid (Echinodermata) pavements: Upper Ordovician of Kentucky and Ohio. Historical Biology, 4:155178.CrossRefGoogle Scholar
Meyer, D. L. and Davis, R. A. 2009. A sea without fish: Life in the Ordovician Sea of the Cincinnati Region. Indiana University Press, Bloomington, 346 p.Google Scholar
Mikulic, D. G. 1990. The arthropod fossil record: Biologic and taphonomic controls on its composition, p. 123. In Culver, S. J. (ed.), Arthropod Paleobiology. Paleontological Society Short Course in Paleontology, 3.Google Scholar
Miller, S. A. 1875. Monograph of the class Brachiopoda of the Cincinnati Group. Cincinnati Quarterly Journal of Science, 2:662.Google Scholar
Morris, R. W. and Felton, S. H. 1993. Symbiotic association of crinoids, platyceratid gastropods, and Cornulites in the Upper Ordovician (Cincinnatian) of the Cincinnati, Ohio Region. Palaios, 8:465476.CrossRefGoogle Scholar
Morris, R. W. and Rollins, H. B. 1971. The distribution and paleoecological interpretation of Cornulites in the Waynesville Formation (Upper Ordovician) of southwestern Ohio. Ohio Journal of Science, 71(3):159170.Google Scholar
Nascimento, C. and Alexander, R. R. 1994. Laminar and turbulent flow patterns around models of Cambrian to Devonian trilobites in unidirectional currents: Bearing on epizoan distributions. Geological Society of America Abstracts with Programs, 26(3):65.Google Scholar
Nicholson, H. A. 1879. On the structure and affinities of the “Tabulate Corals” of the Paleozoic Period, with critical descriptions of illustrative species. William Blackwood and Sons, Edinburgh, 342 p.Google Scholar
Osgood, R. 1970. Trace fossils of the Cincinnati area. Palaeontographica Americana, 5:281438.Google Scholar
Peck, J. H. 1966. Upper Ordovician formations in the Maysville area, Kentucky. U.S. Geological Survey Bulletin, 1244B:130.Google Scholar
Powers, B. G. and Ausich, W. I. 1990. Epizoan associations in a Lower Mississippian paleocommunity (Borden Group, Indiana, U.S.A.). Historical Biology, 4:245265.CrossRefGoogle Scholar
Pratt, B. R. 2001. Calcification of cyanobacterial filaments: Girvanella and the origin of lower Paleozoic lime mud. Geology, 29:763766.2.0.CO;2>CrossRefGoogle Scholar
Prokop, R. 1965. Argodiscus hornyi gen. n. et sp. n. (Edrioasteroidea) from the Middle Ordovician of Bohemia and a contribution to the ecology of the edrioasteriods. časopis Národního Muzea, Oddíl Přírodovēdnń, 134:3032.Google Scholar
Raymond, P. E. 1916. New and old Silurian trilobites from southeastern Wisconsin, with notes on the genera of the Illaenidae. Bulletin of the Museum of Comparative Zoology, 60:141.Google Scholar
Richards, R. P. 1972. Autecology of Richmondian brachiopods (Late Ordovician of Indiana and Ohio). Journal of Paleontology, 46:386405.Google Scholar
Ross, D. M. 1983. Symbiotic relations, p. 163212. In Bliss, D. E. (ed.), The biology of Crustacea, Vol. 7. Academic Press, New York.Google Scholar
Schlotheim, E. F. Von. 1820. Die Petrefactenkunde auf ihrem jetzigen Standpunkte durch die Beschreibung seiner Sammlung versteinerter und fossiler Überreste des Thier- und Pflanzenreichs der Vorwelt erläutert. Becker, Gotha, 432 p. (In German).Google Scholar
Schumacher, G. A. and Shrake, D. L. 1997. Paleoecology and comparative taphonomy of an Isotelus (Trilobita) fossil lagerstätten from the Waynesville Formation (Upper Ordovician, Cincinnatian Series) of southwestern Ohio, p. 131161. In Brett, C. E. and Baird, G. C. (eds.), Paleontological events: Stratigraphic, ecological, and evolutionary implications. Columbia University Press, New York.Google Scholar
Schumacher, G. A., Swinford, E. M., and Shrake, D. L. 1991. Lithostratigraphy of the Grant Lake Limestone and Grant Lake Formation (Upper Ordovician) in southwestern Ohio. Ohio Journal of Science, 91:5668.Google Scholar
Schumacher, G. A., Frey, R. C., and Bergström, S. M. 2000. The lithostratigraphy and biostratigraphy of the C4 sequence (Arnheim Formation) in southwestern Ohio: A test of the chronostratigraphic significance of the C5 sequence boundary. Geological Society of America Abstracts with Programs, 32(4):59.Google Scholar
Seilacher, A. 1985. Trilobite paleoecology and substrate relationships. Royal Society of Edinburgh Transactions (Earth Sciences), 76:231237.CrossRefGoogle Scholar
Servais, T., Harper, D. A. T., Munneckec, A., Owen, A. W., and Sheehan, P. M. 2009. Understanding the Great Ordovician Biodiversification Event (GOBE): Influences of paleogeography, paleoclimate, or paleoecology? GSA Today, 19:410.CrossRefGoogle Scholar
Shirley, J. 1936. Some British trilobites of the family Calymenidae [Ordovician-Silurian] (with discussion). Quarterly Journal of the Geological Society of London, 92:384422.CrossRefGoogle Scholar
Singh, R. J. 1979. Trepostomatous bryozoan fauna from the Bellevue Limestone, Upper Ordovician in the tri-state area of Ohio, Indiana and Kentucky. Bulletins of American Paleontology, 76:162280.Google Scholar
Smith, A. M. and Nelson, C. S. 2003. Effects of early sea-floor processes on the taphonomy of temperate shelf skeletal carbonate deposits. Earth-Science Reviews, 63:131.CrossRefGoogle Scholar
Snajdr, M. 1983. Epifauna on the exuviae of Bohemian Devonian trilobites. Casopis pro Mineralogii a Geologii, 28:181186.Google Scholar
Tapanila, L. 2005. Palaeoecology and diversity of endosymbionts in Palaeozoic marine invertebrates: trace fossil evidence. Lethaia, 38:8999.CrossRefGoogle Scholar
Taylor, P. D. 1990. Encrustors, p. 346351. In Briggs, D. E. G. and Crowther, P. R. (eds.), Palaeobiology: A synthesis. Blackwell Scientific, Oxford.CrossRefGoogle Scholar
Taylor, P. D. and Wilson, M. A. 2002. A new terminology for marine organisms inhabiting hard substrates. Palaios, 17:522525.2.0.CO;2>CrossRefGoogle Scholar
Taylor, P. D. and Wilson, M. A. 2003. Palaeocology and evolution of marine hard substrate communities. Earth-Science Reviews, 62:1103.CrossRefGoogle Scholar
Taylor, W. L. and Brett, C. E. 1996. Taphonomy and paleoecology of echinoderm lagerstätten from the Silurian (Wenlockian) Rochester Shale. Palaios, 11:118140.CrossRefGoogle Scholar
Tetreault, D. K. 1992. Paleoecologic implications of epibionts on the Silurian lichid trilobite Arctinurus, p. 289. In Lidgard, S. and Crane, P. R. (eds.), North American Paleontological Convention Abstracts and Program. Paleontological Society, Special Publication 6.Google Scholar
Tetreault, D. K. 1997. Trilobite behavior in the Silurian. Second International Trilobite Conference, Brock University, St. Catharines, Ontario. Abstracts with Programs. p. 4849.Google Scholar
Ulrich, E. O. 1882. American Palaeozoic Bryozoa. Journal of the Cincinnati Society of Natural History, 5:121175, 233-257.Google Scholar
Vance, R. R. 1978. A mutualistic interaction between a sessile marine clam and its epibionts. Ecology, 59:679685.CrossRefGoogle Scholar
Vogel, S. 1981. Life in moving fluids. Willard Grant Press, Boston, 352 p.Google Scholar
Waugh, D. A., Feldmann, R. M., Crawford, R. S., Jakobsen, S. L., and Thomas, K. B. 2004. Epibiont preservational and observational bias in fossil marine decapods. Journal of Paleontology, 78:961972.2.0.CO;2>CrossRefGoogle Scholar
Weir, G. W., Peterson, W. L., and Swadley, W. C. 1980. Measured sections of Ordovician strata in Indiana and Ohio. U.S. Geological Survey Open-File Report, 80-235, 81 p.CrossRefGoogle Scholar
Wyse Jackson, P. N. and Key, M. M. Jr. 2007. Borings in trepostome bryozoans from the Ordovician of Estonia: Two ichnogenera produced by a single maker, a case of host morphology control. Lethaia, 40:237252.CrossRefGoogle Scholar