Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-09T17:53:51.327Z Has data issue: false hasContentIssue false

Efficient nonlinear filtering of a singularly perturbed stochastic hybrid system

Published online by Cambridge University Press:  01 November 2011

Jun H. Park
Affiliation:
182 George Street, Providence, RI 02912, USA (email: jun_park@brown.edu)
Boris Rozovskii
Affiliation:
182 George Street, Providence, RI 02912, USA (email: boris_rozovsky@brown.edu)
Richard B. Sowers
Affiliation:
1409 W. Green Street, Urbana, IL 61801, USA (email: r-sowers@illinois.edu)

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Our focus in this work is to investigate an efficient state estimation scheme for a singularly perturbed stochastic hybrid system. As stochastic hybrid systems have been used recently in diverse areas, the importance of correct and efficient estimation of such systems cannot be overemphasized. The framework of nonlinear filtering provides a suitable ground for on-line estimation. With the help of intrinsic multiscale properties of a system, we obtain an efficient estimation scheme for a stochastic hybrid system.

Type
Research Article
Copyright
Copyright © London Mathematical Society 2011

References

[1]Bain, A. and Crisan, D., Fundamentals of stochastic filtering, Stochastic Modelling and Applied Probability 60 (Springer, New York, 2009).CrossRefGoogle Scholar
[2]Benes̆, V. E., ‘Exact finite-dimensional filters for certain diffusions with nonlinear drift’, Stochastics 5 (1981) 6592.CrossRefGoogle Scholar
[3]Crudu, A., Debussche, A. and Radulescu, O., ‘Hybrid stochastic simplifications for multiscale gene networks’, BMC Syst. Biol. 3 (2009) no. 89.Google Scholar
[4]Daum, F., ‘Exact finite-dimensional nonlinear filters’, IEEE Trans. Automat. Control 31 (1986) no. 7, 616622.CrossRefGoogle Scholar
[5]Doucet, A., ‘On sequential simulation-based methods for Bayesian filtering’, Technical report (Department of Engineering, University of Cambridge, Cambridge, UK, 1998).Google Scholar
[6]Filar, J., Gaitsgory, V. and Haurie, A., ‘Control of singularly perturbed hybrid stochastic systems’, IEEE Trans. Automat. Control 46 (2001) no. 2, 179190.CrossRefGoogle Scholar
[7]Fuhrman, M., ‘Hypercontractivity properties of nonsymmetric Ornstein–Uhlenbeck semigroups in Hilbert spaces’, Stoch. Anal. Appl. 16 (1998) no. 2, 241260.CrossRefGoogle Scholar
[8]Givon, D., Stinis, P. and Weare, J., ‘Variance reduction for particle filters of systems with time scale separation’, IEEE Trans. Signal Process. 57 (2009) no. 2, 424435.CrossRefGoogle Scholar
[9]Hwang, I., Balakrishnan, H. and Tomlin, C., ‘State estimation for hybrid systems: applications to aircraft tracking’, IEE Proc. – Control Theory Appl. 153 (2006) no. 5, 556566.CrossRefGoogle Scholar
[10]Il’in, A. M., Khasminskii, R. Z. and Yin, G., ‘Singularly perturbed switching diffusions: rapid switchings and fast diffusions’, J. Optim. Theory Appl. 102 (1999) no. 3, 555591.CrossRefGoogle Scholar
[11]Kalman, R. E., ‘A new approach to linear filtering and prediction problems’, J. Basic Eng. 82 (1960) no. 1, 3545.CrossRefGoogle Scholar
[12]Kokotović, P., Khalil, H. and O’Reilly, J., Singular perturbation methods in control: analysis and design (Society for Industrial and Applied Mathematics, 1999).CrossRefGoogle Scholar
[13]Miller, M., Grenander, U., O’Sullivan, J. and Snyder, D., ‘Automatic target recognition organized via jump-diffusion algorithms’, IEEE Trans. Image Process. 6 (1997) no. 1, 157174.CrossRefGoogle ScholarPubMed
[14]Papanicolaou, G. C., ‘Asymptotic analysis of stochastic equations’, Studies in probability theory, Mathematical Association of America Studies 18 (ed. Rosenblatt, M.; Mathematical Association of America, 1978) 111179.Google Scholar
[15]Park, J. H., Namachchivaya, N. S. and Sowers, R. B., ‘A problem in stochastic averaging of nonlinear filters’, Stoch. Dyn. 8 (2008) no. 3, 543560.CrossRefGoogle Scholar
[16]Park, J. H., Sowers, R. B. and Namachchivaya, N. S., ‘Dimensional reduction in nonlinear filtering’, Nonlinearity 23 (2010) 305324.CrossRefGoogle Scholar
[17]Park, J. H., Namachchivaya, N. S. and Yeong, H. C., ‘Particle filters in a multiscale environment: homogenized hybrid particle filter’, J. Appl. Mech. 78 (2011) no. 6, 061001.CrossRefGoogle Scholar
[18]Rozovskii, B. L., Stochastic evolution systems, Mathematics and its Applications (Soviet Series) 35 (Kluwer Academic, Dordrecht, 1990) Linear theory and applications to nonlinear filtering, translated from the Russian by A. Yarkho.CrossRefGoogle Scholar
[19]Rozovskii, B., Blazek, R. and Petrov, A., Interactive banks of Bayesian matched filters, In SPIE Proceedings (Volume 4048): Signal and Data Processing of Small Targets (Orlando, FL, 2000) (ed. Drummond, O. E.; SPIE (The International Society for Optical Engineering), Bellingham, WA, 2000).Google Scholar
[20]Sworder, D. D. and Boyd, J., Estimation problems in hybrid systems (Cambridge University Press, Cambridge, UK, 1999).CrossRefGoogle Scholar
[21]Verhulst, F., Methods and applications of singular perturbations: boundary layers and multiple timescale dynamics (Springer, Berlin, 2005).CrossRefGoogle Scholar
[22]Wang, H., ‘Mathematical theory of molecular motors and a new approach for uncovering motor mechanisms’, IEE Proc. – Nanobiotechnology 150 (2003) no. 3, 127133.CrossRefGoogle Scholar
[23]Yin, G. and Zhu, C., Hybrid switching diffusions: properties and applications, Stochastic Modelling and Applied Probability 63 (Springer, Berlin, 2010).CrossRefGoogle Scholar
[24]Zakai, M., ‘On the optimal filtering of diffusion processes’, Z. Wahrscheinlichkeitstheorie verw. Geb. 11 (1969) 230243.CrossRefGoogle Scholar
[25]Zhang, Q. and Yin, G., ‘Nearly-optimal asset allocation in hybrid stock investment models’, J. Optim. Theory Appl. 121 (2004) no. 2, 419444.CrossRefGoogle Scholar