Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-19T08:45:39.171Z Has data issue: false hasContentIssue false

Synthetic geomicrobiology: engineering microbe–mineral interactions for space exploration and settlement

Published online by Cambridge University Press:  27 May 2011

Charles S. Cockell
Affiliation:
Open University, Milton Keynes MK7 6AA, UK e-mail: c.s.cockell@open.ac.uk

Abstract

Synthetic geomicrobiology is a potentially new branch of synthetic biology that seeks to achieve improvements in microbe–mineral interactions for practical applications. In this paper, laboratory and field data are provided on three geomicrobiology challenges in space: (1) soil formation from extraterrestrial regolith by biological rock weathering and/or the use of regolith as life support system feedstock, (2) biological extraction of economically important elements from rocks (biomining) and (3) biological solidification of surfaces and dust control on other planetary surfaces. The use of synthetic or engineered organisms in these three applications is discussed. These three examples are used to extract general common principles that might be applied to the design of organisms used in synthetic geomicrobiology.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, D.G. & Carr, N.G. (1981). Heterocyst differentiation and cell division in the cyanobacterium Anabaena cylindrica: effect of high light intensity. J. Cell Sci. 49, 341352.Google Scholar
Barker, W.W. & Banfield, J.F. (1996). Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracellular microbial polymers in lithobiontic communities. Chem. Geol. 132, 5569.Google Scholar
Benzerara, K. & Menguy, N. (2009). Looking for traces of life in minerals. C. R. Palevol. 8, 617628.Google Scholar
Billi, D., Friedmann, E.I., Hofer, K.G., Grilli Caiola, M. & Ocampo-Friedmann, R. (2000). Ionizing radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Appl. Environ. Microbiol. 66, 14891492.Google Scholar
Billi, D. & Grilli Caiola, M. (1996a). Effects of nitrogen limitation and starvation on Chroococcidiopsis sp. (Chroococcales). New Phytol. 133, 563571.Google Scholar
Budel, B., Weber, B., Kuhl, M., Pfanz, H., Sultemeyer, D. & Wessels, D. (2004). Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes. Geobiology 2, 261268.Google Scholar
Busch, M. (2004). Profitable asteroid mining. J. Br. Interplan. Soc. 57, 301305.Google Scholar
Calvaruso, C., Turpault, M. & Frey-Klett, P. (2006). Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Appl. Environ. Microbiol. 72, 12581266.Google Scholar
Certini, G. & Scalenghe, R. (2010). Do soils exist outside Earth? Planet. Space Sci. 58, 17671770.Google Scholar
Christensen, P.R., Wyatt, M.B., Glotch, T.D., Rogers, A.D., Anwar, S., Arvidson, R.E., Bandfield, J.L., Blaney, D.L., Budney, C., Clavin, W.M. et al. (2004). Mineralogy at Meridiani Planum from the mini-TES experiment on the Opportunity Rover. Science 306, 17331739.Google Scholar
Clark, C.A. & Norris, P.R. (1996). Oxidation of mineral sulphides by thermophilic microorganisms. Miner. Eng. 9, 11191125.Google Scholar
Cockell, C.S. (2010). Geomicrobiology beyond Earth: microbe–mineral interactions in space settlement and exploration. Trends Microbiol. 18, 304314.Google Scholar
Cockell, C.S., Schuerger, A.C., Billi, D., Friedmann, E.I. & Panitz, C. (2005). Effects of a simulated Martian UV flux on the cyanobacterium, Chroococcidiopsis sp. 029. Astrobiology 5, 127140.Google Scholar
Dahlgren, R., Shoji, S. & Nanzyo, M. (1993). Mineralogical characteristics of volcanic ash soils. In Volcanic Ash Soils Genesis, Properties, and Utilization, ed. Shoji, S. & Nanzyo, M., pp. 101143. Elsevier, Amsterdam.Google Scholar
DeJong, J.T., Fritzges, M.B. & Nüsslein, K. (2006). Microbial induced cementation to control sand response to undrained shear. J. Geotech. Geoenviron. Eng. 132, 13811392.Google Scholar
Deng, M.D. & Coleman, J.R. (1999). Ethanol synthesis by genetic engineering in cyanobacteria. Appl. Environ. Microbiol. 65, 523528.Google Scholar
Dong, H. & Yu, B. (2007). Geomicrobiological processes in extreme environments: a review. Episodes 30, 202216.Google Scholar
Erhlich, H.L. & Newman, D.K. (2009). Geomicrobiology. CRC Press, Boca Raton, FL.Google Scholar
Gadd, G.M. (2010). Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology-SGM 156, 609643.Google Scholar
Gislason, S. & Oelkers, E. (2003). The mechanism, rates, and consequences of basaltic glass dissolution. II. An experimental study of the dissolution rates of basaltic glass as a function of pH at temperatures from 6°C to 150°C. Geochim. Cosmochim. Acta 67, 38173832.Google Scholar
Glowa, K.R., Arocena, J.M. & Massicotte, H.B. (2003). Extraction of potassium and/or magnesium from selected soil minerals by Piloderma. Geomicrobiol. J. 20, 99111.Google Scholar
Greenhagen, B.T., Lucey, P.G., Wyatt, M.B., Glotch, T.D., Allen, C.C., Arnold, J.A., Bandfield, J.L., Bowles, N.E., Hanna, K.L.D., Hayne, P.O. et al. (2010). Global silicate mineralogy of the moon from the Diviner Lunar Radiometer. Science 329, 15071509.Google Scholar
Gronstal, A.L., Pearson, V., Kappler, A., Anand, M., Poitrasson, F., Kee, T.P. & Cockell, C.S. (2009). Laboratory experiments on the weathering of iron meteorites and carbonaceous chondrites by iron-oxidising bacteria. Meteorit. Planet. Sci. 44, 233248.Google Scholar
Gudbrandsson, S., Wolff-Boenisch, D., Gislason, S.R. & Oeklers, E.H. (2008). Dissolution rates of crystalline basalt at pH 4 and 10 and 25–75°C. Miner. Mag. 72, 155158.Google Scholar
Hendrickx, L. & Mergeay, M. (2007). From the deep sea to the stars: human life support through minimal communities. Curr. Opin. Microbiol. 10, 231237.Google Scholar
Holmes, D.S., Cardenas, J.P., Valdes, J., Quatrini, R., Esparza, M., Osorio, H., Duarte, F., Lefimil, C. & Jedlicki, E. (2009). Comparative genomics begins to unravel the ecophysiology of bioleaching. Biohydrometall. Adv. Mater. Res. 71–73, 143150.Google Scholar
Hu, C.X., Liu, Y.D., Zhang, D.L., Huang, Z.B. & Paulsen, B.S. (2002). Cementing mechanism of algal crusts from desert area. Chin. Sci. Bull. 47, 13611368.Google Scholar
Janssen, P.J., Morin, N., Mergeay, M., Leroy, B., Wattiez, R., Vallaeys, T., Waleron, K., Waleron, M., Wilmotte, A., Quillardet, P. et al. (2010). Genome sequence of the edible cyanobacterium Arthrospira sp. PCC 8005. J. Bacteriol. 192, 24652466.Google Scholar
Kahre, M.A., Murphy, J.R. & Haberle, R.M. (2006). Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. J. Geophys. Res. 111, E06008.Google Scholar
Kappler, A. & Newman, D.K. (2004). Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria. Geochim. Cosmochim. Acta 68, 12171226.Google Scholar
Knauss, K.G., Nguyen, S.N. & Weed, H.C. (1993). Diopside dissolution kinetics as a function of pH, CO2, temperature, and time. Cosmochim. Geochim. Acta 57, 285294.Google Scholar
Konhauser, K. (2007). An Introduction to Geomicrobiology. Blackwell Publishers, Oxford.Google Scholar
Kryzanowski, T. & Mardon, A. (1990). Mining potential of asteroid belt. Can. Min. J. 111, 43.Google Scholar
Lee, L.H. (1995). Adhesion and cohesion mechanisms of lunar dust on the Moon's surface. J. Adhes. Sci. Technol. 9, 11031124.Google Scholar
Lehto, K., Kanervo, E., Stahle, K., Lehto, H., Tammi, M. & Virtanen, J. (2007). Photosynthetic life support systems in the Martian conditions. In ROME: Response of Organisms to the Martian Environment, ed. Cockell, C. & Horneck, G., ESA Special Publication, AP-1299. Paris.Google Scholar
Liu, Y.D., Cockell, C.S., Wang, G., Hu, C.X., Chen, L. & De Philippis, R. (2008). Control of Lunar and Martian dust–experimental insights from artificial and natural cyanobacterial and algal crusts in the desert of Inner Mongolia, China. Astrobiology 8, 7586.Google Scholar
McGuire, M.M., Edwards, K.J., Banfield, J.F. & Hamers, R.J. (2001). Kinetics, surface chemistry, and structural evolution of microbially mediated sulphide mineral dissolution. Geochim. Cosmochim. Acta 65, 12431258.Google Scholar
Metayer-Levrel, G., Castanier, S., Orial, G., Loubiere, J.F. & Perthuisot, J.P. (1999). Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic parsimony. Sediment. Geol. 126, 2534.Google Scholar
Ming, D.W. & Henninger, D.L. (1994). Use of lunar regolith as a substrate for plant growth. Adv. Space Res. 14, 435443.Google Scholar
Miot, J., Benzerara, K., Morin, G., Kappler, A., Bernard, S., Obst, M., Férard, C., Skouri-Panet, F., Guigner, J.-M., Posth, N. et al. (2009b). Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria. Geochim. Cosmochim. Acta 73, 696711.Google Scholar
Norris, P.R., Burton, N.P. & Foulis, N.A.M. (2000). Acidophiles in bioreactor mineral processing. Extremophiles 4, 7176.Google Scholar
Norton, O.R., Ort, K. & Norton, D.S. (1998). Rocks from Space: Meteorites and Meteorite Hunters. Mountain Press Publishing Company, Missoula, MT.Google Scholar
Oelkers, E.H. & Schott, J. (2001). An experimental study of enstatite dissolution rates as a function of pH, temperature, and aqueous Mg and Si concentration, and the mechanism of pyroxene/pyroxenoid dissolution. Geochim. Cosmochim. Acta 65, 12191231.Google Scholar
Olsson-Francis, K. & Cockell, C.S. (2010). Use of cyanobacteria for in-situ resource use in space applications. Planet. Space Sci. 58, 12791285.Google Scholar
Olsson-Francis, K., de la Torre, R. & Cockell, C.S. (2010a). Isolation of novel extreme-tolerant cyanobacteria from a coastal rock-dwelling microbial community using exposure to low Earth orbit. Appl. Environ. Microbiol. 76, 21152121.Google Scholar
Olsson-Francis, K., Van Houdt, R., Mergeay, M., Leys, N. & Cockell, C.S. (2010b). Micro-array analysis of a microbe–mineral interaction. Geobiology 8, 446456.Google Scholar
Pickard, W.F. (2008). Geochemical constraints on sustainable development: can an advanced global economy achieve long-term stability. Global Planet. Change 61, 285299.Google Scholar
Pronk, J.T. & Johnson, D.B. (1992). Oxidation and reduction of iron by acidophilic bacteria. Geomicrobiol. J. 10, 153171.Google Scholar
Rawlings, D.E. (2005). Characteristics and adaptability of iron- and sulphur-oxidising microorganisms used for the recovery of metals from minerals and their concentrates. Microbial. Cell Factories 4, 115.Google Scholar
Rogers, J.R., Bennett, P.C. & Choi, W.J. (1998). Feldspars as a source of nutrients for microorganisms. Am. Miner. 83, 15321540.Google Scholar
Ruzicka, A., Snyder, G.A. & Taylor, L.A. (2001). Comparative geochemistry of basalts from the moon, earth, HED asteroid, and Mars: implications for the origin of the moon. Geochim. Cosmochim. Acta 65, 979997.Google Scholar
Sato, Y., Nishihara, H., Yoshida, M., Watanabe, M., Rondal, J.D. & Ohta, H. (2004). Occurrence of hydrogen-oxidizing Ralstonia species as primary microorganisms in the Mt. Pinatubo volcanic mudflow deposits. Soil Sci. Plant Nut. 50, 855861.Google Scholar
Schippers, A., Breuker, A., Blazejak, A., Bosecker, K., Kock, D. & Wright, T.L. (2010). The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria. Hydrometallurgy 104, 342350.Google Scholar
Schroeter, A.W. & Sand, W. (1993). Estimations on the degradability of ores and bacterial leaching activity using short time microcalorimetric tests. FEMS Microbiol. Rev. 11, 7986.Google Scholar
Silverman, M.P. & Lundgren, D.G. (1959). Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. J. Bacteriol. 77, 642647.Google Scholar
Solisio, C., Lodi, A. & Veglio, F. (2002). Bioleaching of zinc and aluminium from industrial waste sludges by means of Thiobacillus ferrooxidans. Waste Manage. 22, 667675.Google Scholar
Sonter, M.J. (1997). The technical and economic feasibility of mining the near-Earth asteroids. Acta Astronaut. 41, 637647.Google Scholar
Stanliand, S., Coppock, M., Tuffin, M., van Zyl, L., Roychoudhury, A.N. & Cowan, D. (2010). Cobalt uptake and resistance to trace metals in Comamonas testosteroni isolated from a heavy-metal contaminated site in the Zambian copperbelt. Geomicrobiol. J. 27, 656668.Google Scholar
Steen, B. & Borg, G. (2002). An estimation of the cost of sustainable production of metal concentrates from the Earth's crust. Ecol. Econ. 42, 401413.Google Scholar
Stookey, L.L. (1970). Ferrozine – A new spectrophotometric reagent for iron. Ann. Chem. 42, 779781.Google Scholar
Stott, M.B., Sutton, D.C., Watling, H.R. & Franzmann, P.D. (2003). Comparative leaching of chalcopyrite by selected acidophilic bacteria and archaea. Geomicrobiol. J. 20, 215230.Google Scholar
Templeton, A. & Knowles, E. (2009). Microbial transformations of minerals and metals: recent advances in geomicrobiology derives from synchrotron-based X-ray spectroscopy and X-ray microscopy. Annu. Rev. Earth Planet. Sci. 37, 367391.Google Scholar
Welch, S.A., Taunton, A.E. & Banfield, J.F. (2002). Effect of microorganisms and microbial metabolites on apatite dissolution. Geomicrobiol. J. 19, 343367.Google Scholar
Wogelius, R.A. & Walthier, J.V. (1991). Olivine dissolution at 25°C: effects of pH, CO2 and organic acids. Geochim. Cosmochim. Acta 55, 943954.Google Scholar
Wolff-Boenisch, D., Gislason, S.R. & Oelkers, E.H. (2006). The effect of crystallinity on dissolution rates and CO2 consumption capacity of silicates. Geochim. Cosmochim. Acta 70, 858870.Google Scholar
Wu, L., Jacobson, A.D., Chen, H. & Hausner, M. (2007). Characterisation of elemental release during microbe–basalt interactions at T=28°C. Geochim. Cosmochim. Acta 71, 22242239.Google Scholar