Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-22T17:30:10.971Z Has data issue: false hasContentIssue false

REAL IDEALS IN POINTFREE RINGS OF CONTINUOUS FUNCTIONS

Published online by Cambridge University Press:  06 December 2010

THEMBA DUBE*
Affiliation:
Department of Mathematical Sciences, University of South Africa, PO Box 392, 0003 Unisa, South Africa (email: dubeta@unisa.ac.za)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Real ideals of the ring ℜL of real-valued continuous functions on a completely regular frame L are characterized in terms of cozero elements, in the manner of the classical case of the rings C(X). As an application, we show that L is realcompact if and only if every free maximal ideal of ℜL is hyper-real—which is the precise translation of how Hewitt defined realcompact spaces, albeit under a different appellation. We also obtain a frame version of Mrówka’s theorem that characterizes realcompact spaces.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2010

References

[1]Ball, R. N. and Hager, A. W., ‘On the localic Yosida representation of an archimedean lattice ordered group with weak order unit’, J. Pure Appl. Algebra 70 (1991), 1743.CrossRefGoogle Scholar
[2]Ball, R. N. and Walters-Wayland, J., ‘C- and C *-quotients in pointfree topology’, Dissertationes Math. (Rozprawy Mat.) 412 (2002), 62.Google Scholar
[3]Banaschewski, B., ‘The real numbers in pointfree topology’. Textos de Matemática, Série B, 12. Departamento de Matemática, Universidade de Coimbra, Coimbra (1997).Google Scholar
[4]Banaschewski, B., ‘A uniform view of localic realcompactness’, J. Pure Appl. Algebra 143 (1999), 4968.CrossRefGoogle Scholar
[5]Banaschewski, B., ‘On the function ring functor in pointfree topology’, Appl. Categ. Structures 13 (2005), 305328.CrossRefGoogle Scholar
[6]Banaschewski, B., ‘A new aspect of the cozero lattice in pointfree topology’, Topology Appl. 156 (2009), 20282038.CrossRefGoogle Scholar
[7]Banaschewski, B. and Gilmour, C., ‘Stone–Čech compactification and dimension theory for regular σ-frames’, J. Lond. Math. Soc. 39(2) (1989), 18.CrossRefGoogle Scholar
[8]Banaschewski, B. and Gilmour, C., ‘Pseudocompactness and the cozero part of a frame’, Comment. Math. Univ. Carolin. 37(3) (1996), 577587.Google Scholar
[9]Banaschewski, B. and Gilmour, C., ‘Realcompactness and the cozero part of a frame’, Appl. Categ. Structures 9 (2001), 395417.CrossRefGoogle Scholar
[10]Dube, T., ‘Some ring-theoretic properties of almost P-frames’, Algebra Universalis 60 (2009), 145162.CrossRefGoogle Scholar
[11]Gillman, L. and Jerison, M., Rings of Continuous Functions (Van Nostrand, Princeton, NJ, 1960).CrossRefGoogle Scholar
[12]Henriksen, M., Isbell, J. R. and Johnson, D. G., ‘Residue class fields of lattice-ordered algebras’, Fund. Math. 50 (1961/1962), 107117.CrossRefGoogle Scholar
[13]Hewitt, E., ‘Rings of real-valued continuous functions. I’, Trans. Amer. Math. Soc. 64 (1948), 4599.CrossRefGoogle Scholar
[14]Johnstone, P. T., Stone Spaces (Cambridge University Press, Cambridge, 1982).Google Scholar
[15]Madden, J. and Vermeer, J., ‘Lindelöf locales and realcompactness’, Math. Proc. Cambridge Philos. Soc. 99 (1986), 473480.CrossRefGoogle Scholar
[16]Marcus, N., ‘Realcompactification of frames’, Comment. Math. Univ. Carolin. 36(2) (1995), 349358.Google Scholar
[17]Mrówka, S., ‘Some properties of Q-spaces’, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astro. Phys. 5 (1957), 947950.Google Scholar
[18]Picado, J., Pultr, A. and Tozzi, A., ‘Locales’, in: Categorical Foundations, Encyclopedia of Mathematics and its Applications, 97 (Cambridge University Press, Cambridge, 2004),pp. 49101.Google Scholar
[19]Wei, H., ‘Remarks on completely regular Lindelöf reflection of locales’, Appl. Categ. Structures 13 (2005), 7177.CrossRefGoogle Scholar