Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-17T12:39:39.227Z Has data issue: false hasContentIssue false

Evidence of a two-fold glacial advance during the last glacial maximum in the Tagliamento end moraine system (eastern Alps)

Published online by Cambridge University Press:  20 January 2017

Giovanni Monegato
Affiliation:
Dipartimento Georisorse e Territorio, Università di Udine, Via Cotonificio 114, 33100 Udine, and Dipartimento Geologia, Paleontologia e Geofisica, Università di Padova, Via Giotto 1, 35126 Padova, Italy
Cesare Ravazzi*
Affiliation:
C.N.R.–Laboratorio di Palinologia e Paleoecologia, Istituto per la Dinamica dei Processi Ambientali, Piazza della Scienza 1, 20126 Milano, Italy
Marta Donegana
Affiliation:
C.N.R.–Laboratorio di Palinologia e Paleoecologia, Istituto per la Dinamica dei Processi Ambientali, Piazza della Scienza 1, 20126 Milano, Italy
Roberta Pini
Affiliation:
C.N.R.–Laboratorio di Palinologia e Paleoecologia, Istituto per la Dinamica dei Processi Ambientali, Piazza della Scienza 1, 20126 Milano, Italy
Gilberto Calderoni
Affiliation:
Dipartimento Scienze della Terra, Università di Roma ‘La Sapienza’, Piazzale Moro 5, 00185 Roma, Italy
Lucia Wick
Affiliation:
Institute of Prehistory and Archaeological Science, University of Basel, Spalenring 145, 4055 Basel, Switzerland
*
*Corresponding author. C.N.R.-Istituto per la Dinamica dei Processi Ambientali, Via Pasubio 3/5, 24044 Dalmine (I), Italy. Fax: +39 035 6224260.E-mail address:cesare.ravazzi@idpa.cnr.it (C. Ravazzi).

Abstract

The glacial history of the Tagliamento morainic amphitheater (southeastern Alpine foreland, Italy) during the last glacial maximum (LGM) has been reconstructed by means of a geological survey and drillings, radiocarbon dating and pollen analysis in the amphitheater and in the sandur. Two phases of glacial culmination, separated by a distinct recession, are responsible for glacial landforms and related sediments in the outer part of the amphitheater. The age of the younger advance fits the chronology of the culmination of the last glaciation in the Alps, well established between 24 and 21 cal ka BP (20 to 17.5 14C ka BP), whereas the first pulse between 26.5 and 23 cal ka BP (22 to 21 14C ka BP), previously undated, was usually related to older (pre-LGM) glaciations by previous authors. Here, the first pulse is the most extensive LGM culmination, but is often buried by the subsequent pulse. The onset and final recession of the late Würm Alpine glaciation in the Tagliamento amphitheater are synchronous with the established global glacial maximum between 30 and 19 cal ka BP. The two-fold LGM glacial oscillation is interpreted as a millennial-scale modulation within the late Würm glaciation, caused by oscillations in inputs of southerly atmospheric airflows related to Dansgaard–Oeschger cycles. Phases of enhanced southerly circulation promoted increased rainfall and ice accumulation in the southern Alps.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alessio, M., Allegri, L., Bella, F., Belluomini, G., Calderoni, G., Cortesi, C., Improta, S., Manfra, L., and Orombelli, G. (1978). I depositi lacustri di Rovagnate, di Pontida e di Pianico in Lombardia: datazione con il 14C. Geografia Fisica Dinamica Quaternaria 1, 131137.Google Scholar
Allen, J.R.M., and Huntley, B. (2000). Weichselian palynological records from southern Europe: correlation and chronology. Quaternary International 73/74, 111125.CrossRefGoogle Scholar
Avigliano, R., di Anastasio, G., Improta, S., Peresani, M., and Ravazzi, C. (2000). A new Late Glacial–Early Holocene paleobotanical and archeological record in the Venetian Pre-Alps: the peat-bog of Palughetto (Cansiglio Plateau). Journal of Quaternary Sciences 15, 8 789803.3.0.CO;2-E>CrossRefGoogle Scholar
Avigliano, R., Monegato, G., Zanolla, S., Michelutti, G., and Mozzi, P. (2002a). )Confronto tra informazioni geologiche e pedologiche sul conoide del Cellina (Friuli, Italia): II. Quaternario–Italian Journal of Quaternary Science 15, 1 99104.Google Scholar
Avigliano, R., Calderoni, G., Monegato, G., and Mozzi, P. (2002b). )The late Pleistocene–Holocene evolution of the Cellina and Meduna alluvial fans (Friuli NE Italy). Memorie Società Geologica Italiana 57, 1 133139.Google Scholar
Beug, H.J. (2004). Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Dr. Friedrich Pfeil, München.Google Scholar
Bini, A. (1997). Stratigraphy, chronology and paleogeography of Quaternary between Ticino and Olona rivers. Geologia Insubrica 2, 2146.Google Scholar
Bini, C., and Mondini, C. (1992). Deep Weathering features in Paleosols from Alluvial Deposits (“Terra Rossa”-like) in the Friuli Piedmont Area (Italy). Mineralogica et Petrographica Acta XXXV, 121.Google Scholar
Bond, G., Broeker, W., Cwynar, M.J.C., Johnsen, S.J., McManus, J., Labeyrie, L., Jouzel, J., and Bonani, G. (1993). Correlation between climatic records from North Atlantic sediments and Greenland ice. Nature 365, 143147.CrossRefGoogle Scholar
Bondesan, A., Calderoni, G., and Mozzi, P. (2002). L'assetto geomorfologico della Pianura Veneta centro-orientale: stato delle conoscenze e nuovi dati.Varotto, M., Zunica, M. Scritti in ricordo di Giovanna Brunetta, Università degli Studi di Padova, Dipartimento di Geografia “G. Morandini” 1938.Google Scholar
Bortenschlager, I., and Bortenschlager, S. (1978). Pollenanalytische Untersuchung am Bänderton von Baumkirchen (Inntal Tirol). Zeitschrift für Gletscherkunde und Glazialgeologie 14, 1 95103.Google Scholar
Boyce, J.I., and Eyles, N. (2000). Architectural element analysis applied to glacial deposits: internal geometry of a late Pleistocene till sheet Ontario, Canada. GSA Bullettin 112, 98118.2.0.CO;2>CrossRefGoogle Scholar
Broecker, W.S. (1994). Massive iceberg discharges as triggers for global climate change. Nature 372, 421424.CrossRefGoogle Scholar
Buoncristiani, J.-F., and Campy, M. (2004). The palaeogeography of the last two glacial episodes in France, the Alps and Jura.Elhers, J., Gibbard, P.L. Quaternary Glaciations—Extent and Chronology–Part I: Europe Elsevier, 101110.CrossRefGoogle Scholar
CalPal, www.calpal.de. (2005). Online calibration programme for 14C datings.. Cologne Radiocarbon Calibration and Palaeoclimate Research Package..Google Scholar
Carraro, F., and Petrucci, F. (1977). Geologia dei depositi superficiali: anfiteatro morenico.Martinis, B. Studio geologico dell’area maggiormente colpita dal terremoto friulano del Rivista Italiana Paleontologia e Stratigrafia vol. 82, 193393.Google Scholar
Carraro, F., and Petrucci, F. (1982). Tentative assessment of the deformation of a morainic amphitheatre: the Tagliamento Amphitheatre (Italy). Zeitschrift für Geomorphologie 26, 331341.CrossRefGoogle Scholar
Casadoro, G., Castiglioni, G.B., Corona, E., Massari, F., Moretto, M.G., Paganelli, A., Terenzani, F., and Toniello, V. (1976). Un deposito tardowürmiano con tronchi subfossili alle fornaci di Revine (Treviso). Bollettino del Comitato Glaciologico Italiano 24, 2263.Google Scholar
Castiglioni, G.B. (2004). Quaternary glaciations in the eastern sector of the Italian Alps.Elhers, J., Gibbard, P.L. Quaternary Glaciations–Extent and Chronology–Part I: Europe Elsevier, 209215.CrossRefGoogle Scholar
Chaline, J., and Jerz, H. (1984). Arbeitsergebnisse der Subkommission für Europäische Quartärstratigraphie. Stratotypen des Würm-Glazials. Eiszeitalter und Gegenwart 35, 185206.Google Scholar
Chondriogianni, C., Ariztegui, D., Rolph, T., Juggins, S., Shemesh, A., Rietti-Shati, M., Niessen, F., Guilizzoni, P., Lami, A., McKenzie, J.A., and Oldfield, F. (2004). Millennial to interannual climate variability in the Mediterranean during Last Glacial Maximum. Quaternary International 122, 3141.CrossRefGoogle Scholar
(2003). CIS-Commissione Italiana di Stratigrafia,.Guida Italiana alla classificazione e alla terminologia stratigrafica. APAT–Dipartimento Difesa del Suolo. Quaderni serie III, 9., Selca, Firenze..Google Scholar
Clark, P.U., and Bartlein, P.J. (1995). Correlation of late Pleistocene glaciation in the western United States with North Atlantic Heinrich events. Geology 23, 483486.2.3.CO;2>CrossRefGoogle Scholar
Comel, A. (1955). Monografia sui terreni della pianura friulana: II. Genesi della pianura centrale connessa all’antico sistema fluvioglaciale del Tagliamento. Nuovi Annali Istituto Chimico-Agrario Sperimentale Gorizia 6, 1216.Google Scholar
Croce, D., and Vaia, F. (1985). Aspetti geomorfologici dell'anfiteatro tilaventino (Friuli). Gortania-Atti. Museo Friulano Storia Naturale 7, 536.Google Scholar
Damblon, F., and Haesaerts, P. (1997). Radiocarbon chronology of representative upper Palaeolithic sites in the Central European Plain: a contribution to the SC-004 project. Préhistoire Européenne 11, 255276.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdóttir, A.E., Jouzel, J., and Bond, G.C. (1993). Evidence for general instability of past climate from a 250 kyr ice-core record. Nature 264, 218220.CrossRefGoogle Scholar
Elhers, J., and Gibbard, P.L. (2004). Quaternary Glaciations–Extent and Chronology–Part I: Europe. Elsevier.Google Scholar
Eyles, N., Eyles, C.H., and Miall, A.D. (1983). Lithofacies types and vertical profile models; an alternative approach to the description and environmental interpretation of glacial diamict and diamictite sequences. Sedimentology 30, 393410.Google Scholar
Feruglio, E. (1920). I terrazzi della pianura pedemorenica friulana. Ufficio Idrografico Regio Magistrato Acque Venezia 107, 193.Google Scholar
Feruglio, E. (1925). Carta geologica delle Tre Venezie. Foglio 25 “Udine”. Ufficio Idrografico Regio Magistrato Acque di Venezia.Google Scholar
Feruglio, E. (1929a). )Note illustrative della Carta geologica delle Tre Venezie. Foglio 25 “Udine”. Ufficio Idrografico Regio Magistrato Acque di Venezia.Google Scholar
Feruglio, E. (1929b). )Nuove ricerche sul Quaternario del Friuli. Giornale di Geologia, seconda serie 4, 136.Google Scholar
Fliri, F. (1973). Beiträge zur Geschichte der alpinen Würmvereisung: Forschungen am Bänderton vom Baumkirchen (Inntal Nordtirol). Zeitschrift für Geomorphologie, Neue Folge 16, 535.Google Scholar
Fliri, F. (1989). Eine erste Bestimmung des Beginnes der Haupt-Würmvereisung im Zentralraum der Alpen (Albeins bei Brixen). Der Schlern 6265.Google Scholar
Fliri, F., Bortenschlager, S., Felber, H., Heissel, W., Hilscher, H., and Resch, W. (1970). Der Bänderton von Baumkirchen (Inntal Tirol). Zeitschrift für Glescherkunde und Glazialgeologie 6, 1–2 535.Google Scholar
Florineth, D., and Schlüchter, C. (2000). )Alpine evidence for atmospheric circulation patterns in Europe during the Last Glacial Maximum. Quaternary Research 54, 294308.Google Scholar
Fontana, A., Mozzi, P.in press.Alluvial megafans in the Veneto-Friuli Plain: evidence of aggrading and erosive phases during Late Pleistocene and Holocene..In:Bondesan, A., Pieruccini, P.(Ed.),Fluvial Architecture and Sedimentary Sequences. Quaternary International..Google Scholar
Friedrich, M., Kromer, B., Spurk, M., Hofmann, J., and Kaiser, K.F. (1999). Paleo-environment and radiocarbon calibration as derived from lateglacial/Early Holocene tree-ring chronologies. Quaternary International 61, 2739.CrossRefGoogle Scholar
Fuchs, F. (1969). Eine erste 14C Datierung für das Paudorf-Interstadial am Alpensüdrand. Eiszeitalter und Gegenwart 20, 6871.Google Scholar
Gaillard, M.-J., and Lemdahl, G. (1994). Lateglacial insect assemblages from Grand-Marais, south-western Switzerland—Climatic implications and comparison with pollen and plant macrofossil data. Dissertationes Botanicae 234, 287308.Google Scholar
Gentilli, J..(1964). Il Friuli.. I climi. Camera di Commercio Industria e Agricoltura,, Udine.Google Scholar
Giraudi, C. (2004). The Apennine glaciations in Italy.Elhers, J., Gibbard, P.L. Quaternary Glaciations–Extent and Chronology–Part I: Europe Elsevier, 215223.CrossRefGoogle Scholar
Giraudi, C., and Frezzotti, M. (1997). Late Pleistocene glacial events in the Central Apennines, Italy. Quaternary Research 48, 280290.Google Scholar
Gortani, M. (1959). Carta della glaciazione würmiana in Friuli. Rendiconti Atti Accademia Scienze Istituto di Bologna 6, 111.Google Scholar
Gradstein, F.M., Ogg, J.G., Smith, A.G., Agterberg, F.P., Bleeker, W., Cooper, R.A., Davydov, V., Gibbard, P., Hinnov, L., House, M.R., Lourens, L., Luterbacher, H.P., McArthur, J., Melchin, M.J., Robb, L.J., Shergold, J., Villeneuve, M., Wardlaw, B.R., Ali, J., Brinkhuis, H., Hilgen, F.J., Hooker, J., Howarth, R.J., Knoll, A.H., Laskar, J., Monechi, S., Powell, J., Plumb, K.A., Raffi, I., Röhl, U., Sanfilippo, A., Schmitz, B., Shackleton, N.J., Shields, G.A., Strauss, H., Van Dam, J., Veizer, J., van Kolfschoten, Th., and Wilson, D. (2004). A Geologic Time Scale. Cambridge Univ. Press, .Google Scholar
Grootes, P.M., and Stuiver, M. (1997). Oxygen 18/16 variability in Greenland snow and ice with 103 to 105-year time resolution. Journal of Geophysical Research 102, 2645526470.Google Scholar
Guiter, F., Triganon, A., Andrieu-Ponel, V., Ponel, P., Hébrard, J.P., Nicoud, G., De Beaulieu, J.L., Brewer, S., and Guibal, F. (2005). First evidence of “in situ” Eemian sediments on the high plateau of Evian (Northern Alps, France): implications for the chronology of the Last Glaciation. Quaternary Science Reviews 24, 3547.CrossRefGoogle Scholar
Huntley, B., and Birks, J.H. (1983). An atlas of past and present pollen maps for Europe 0–13,000 years ago. Cambridge Univ. Press, 667 pp.Google Scholar
(1994). ISSC—International Stratigraphic Subcommission on Stratigraphic Classification,. International Stratigraphic Guide. Second edition.IUGS and The Geological Society of America,, Boulder..214 pp.Google Scholar
Ivy-Ochs, S., Schlüchter, C., Kubik, P.W., Synal, H.A., Beer, J., and Kerschner, H. (1996). The exposure age of an Egesen moraine at Julier Pass, Switzerland, measured with the cosmogenic radionuclides 10Be, 26Al and 36Cl. Eclogae Geologicae Helvetiae 89, 3 10491063.Google Scholar
Ivy-Ochs, S., Schäfer, J., Kubik, P.W., Synal, H.A., and Schlüchter, C. (2004). Timing of deglaciation on the northern Alpine foreland (Switzerland). Eclogae Geologiae Helvetiae 97, 4755.Google Scholar
Ivy-Ochs, S., Kerschner, H., Kubik, P.W., and Schlüchter, C. (2006). Glacier response in the European Alps to Heinrich Event 1 cooling: the Gschnitz stadial. Journal Quaternary Sciences 21, 2 115130.CrossRefGoogle Scholar
Ivy-Ochs, S., Kerschner, H., and Schlüchter, C. (2007). Cosmogenic nuclides and the dating of Lateglacial and Early Holocene glacier variations: The Alpine perspective. Quaternary International 164–165, 5363.Google Scholar
Johnsen, S.J., Clausen, H.B., Dansgaard, W., Gundestrup, N.S., Hammer, C.U., Andersen, U., Andersen, K.K., Hvidberg, C.S., Dahl-Jensen, D., Steffensen, J.P., Shoji, H., Sveinbjörnsdóttir, A.E., White, J.W.C., Jouzel, J., and Fisher, D. (1997). The d18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability. Journal of Geophysical Research 102, 2639726410.CrossRefGoogle Scholar
Jorda, M., Rosique, T., and Évin, J. (2000). Données nouvelles sur l’âge du dernier maximum glaciaire dans les Alpes méridionales françaises. Comptes Rendues de l’Académie des Sciences. Earth and Planetary Sciences 331, 187193.Google Scholar
Kromer, B., Spurk, M., Remmele, S., Barbetti, M., and Toniello, V. (1998). Segments of atmospheric 14C change as derived from Late Glacial and Early Holocene floating tree-ring series. Radiocarbon 40, 1 351358.CrossRefGoogle Scholar
Lambeck, K., and Chappell, J. (2001). Sea level change through the last glacial cycle. Science 292, 679686.CrossRefGoogle ScholarPubMed
Lambeck, K., Yokoyama, Y., and Purcell, T. (2002). Into and out of the Last Glacial Maximum: sea-level change during Oxygen Isotope Stage 3 and 2. Quaternary Science Reviews 21, 343360.Google Scholar
Lang, G. (1994). Quartäre Vegetationsgeschichte Europas. Fischer, Jena.Google Scholar
Lister, G.S. (1988). A 15,000-year isotopic record from Lake Zürich of deglaciation and climatic change in Switzerland. Quaternary Research 29, 129141.CrossRefGoogle Scholar
Lowe, J.J., and Walker, M.J.C. (1997). Reconstructing Quaternary environments.2nd ed.Prentice Hall, Halow.Google Scholar
Maisch, M. (2000). The longterm signal of climate change in the swiss Alps: glacier retreat since the end of the little ice age and future ice decay scenarios. Geografia Fisica e Dinamica Quaternaria 23, 139151.Google Scholar
Mandier, P., Evin, J., Argant, J., and Petiot, R. (2003). Chronostratigraphie des accumulations Wurmiennes dans la moyenne Vallee du Rhone: l'apport des dates radiocarbone. Quaternaire 14, 1 113127.Google Scholar
Marinelli, O. (1900). Tracce di una più antica glaciazione nell’anfiteatro morenico friulano. “In Alto” Anno XI.Google Scholar
Marocco, R. (1997). Pollen analysis and radiocarbon dates of surficial peats of the Tagliamento moraine system (Friuli-Italy). Gortania Atti Museo Friulano Storia Naturale 19, 4352.Google Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., and Shackleton, N.J. (1987). Age dating and the orbital theory of ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research 27, 129.CrossRefGoogle Scholar
Meese, D.A., Gow, A.J., Alley, R.B., Grootes, P.M., Ram, M., Taylor, K.C., Zielinski, G.A., Bolzan, J.F., Mayewski, P.A., and Waddington, E.D. (1997). The Greenland Ice Sheet Project 2 depth-age scale: methods and results. Journal of Geophysical Research 102, 2641126423.Google Scholar
Miall, A.D. (1996). The Geology of Fluvial Deposits. Springer-Verlag, Berlin Heidelberg.Google Scholar
Mix, A.C., Bard, E., and Schneider, R. (2001). Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quaternary Science Reviews 20, 627657.Google Scholar
Mondini, C., Bini, C., Ciet, P., Paronuzzi, P., and Spadea, P. (1991). Clay mineralogy of a soil chronosequence in the Friuli Piedmont Area. Proc-7th EUROCLAY Conf. Dresden ’91, Greiswald.779784.Google Scholar
Muttoni, G., Carcano, C., Garzanti, E., Ghielmi, M., Piccin, A., Pini, R., Rogledi, S., and Sciunnach, D. (2003). Onset of major Pleistocene glaciations in the Alps. Geology 31, 11 989992.CrossRefGoogle Scholar
Moore, P.D., Webb, J.A., and Collinson, M.E. (1991). Pollen analysis. Blackwell Scientific Publications, Oxford.Google Scholar
Nievo, I. (1908). L’anfiteatro morenico del Tagliamento e le successive fasi glaciali. Bollettino Società Geologica Italiana 27, 4583.Google Scholar
Orombelli, G. (1983). Il Pleistocene superiore in Italia: i depositi glaciali. Geografia Fisica e Dinamica Quaternaria 6, 179180.Google Scholar
Orombelli, G., Ravazzi, C., and Cita, M.B. (2005). Osservazioni sul significato dei termini LGM (UMG), Tardoglaciale e postglaciale in ambito globale, italiano ed alpino. Il Quaternario–Italian Journal of Quaternary Sciences 18, 2 147155.Google Scholar
Paiero, G., and Monegato, G. (2003). The Pleistocene evolution of Arzino alluvial fan and western part of Tagliamento morainic amphitheatre (Friuli, NE Italy). Il Quaternario–Italian Journal of Quaternary Sciences 16, 1 185193.Google Scholar
Patzelt, G. (1995). The pollen profile of the peat bog of the Lans lake. 12. Alpine traverse, Max Maisch.Schirmer, K. “Quaternary Field trips in Central Europe” vol. 2, Pfeil, Munich.670671.Google Scholar
Pellegrini, G.B., Albanese, D., Bertoldi, R., and Surian, N. (2005). La deglaciazione alpina nel Vallone Bellunese, Alpi meridionali orientali. Geografia Fisica e Dinamica Quaternaria, Supplemento 7, 271280.Google Scholar
Peltier, W.R., and Fairbanks, R.G. (2006). Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25, 33223337.CrossRefGoogle Scholar
Penck, A., and Brückner, E. (1909). Die Alpen im Eiszeitalter 3, (1199 pp.).Google Scholar
Pini, R., Asioli, A., Avigliano, R., Bertolini, M., Calderoni, G., Donegana, M., Massari, F., Mozzi, P., Pacifico, P., Pugliese, N., Ravazzi, C., and Stefani, C. (2005). A 400 ky Stratigraphic and Palaeoclimatic Record in the Eastern Southalpine Foreland (NE Italy). INQUA–SEQS, Bern.Google Scholar
Pirona, G.A. (1861). Sulle antiche morene del Friuli. Atti Società Italiana Scienze Naturali 2, 348356.Google Scholar
Preusser, F. (2004). Towards a chronology of the Late Pleistocene in the northern Alpine Foreland. Boreas 33, 195210.Google Scholar
Punt, W., and Blackmore, S. (1976–2004). The Northwest European Pollen Flora.vol. 1–8, Elsevier Publishing Company, .Google Scholar
Ravazzi, C. (2002). Late Quaternary history of spruce in southern Europe. Review of Palaeobotany and Palynology 120, 131177.Google Scholar
Ravazzi, C., Orombelli, G., Tanzi, G. CLIMEX group(2004). An outline of the flora and vegetation of Adriatic basin (Northern Italy and eastern side of the Apennines) during the Last Glacial Maximum.Antonioli, F., Vai, G.B. Litho-paleoenvironmental maps of Italy during the Last Two Climatic Extremes. Explanatory Notes. 32nd International Geological Congress, Firenze 1520.Google Scholar
Ravazzi, C., Donegana, M., Vescovi, E., Arpenti, E., Caccianiga, M., Kaltenrieder, P., Marabini, S., Mariani, S., Pini, R., Vai, G.B., and Wick, L. (2006). A new Late-glacial site with Picea abies in the northern Apennine foothills: an exception to the model of glacial refugia of trees. Vegetation History and Archaeobotany 15, 357371.Google Scholar
Reille, M. (1992–1995). )Pollen et spores d'Europe et d'Afrique du Nord. Laboratoire de Botanique Historique et Palynologie, Marseille.Google Scholar
Retallack, G.J. (1991). Soils of the past, an introduction to paleopedology. Harper Collins Academic, London.Google Scholar
Rossi, S., Alberti, F., Felber, M., and Bini, A. (1991). Evidenze di fluttuazioni glaciali würmiane nella bassa valle della Breggia (Cernobbio Como).. Bollettino Società Ticinese di Scienze Naturali 79, 2547.Google Scholar
Ruddiman, W.F., and McIntyre, A. (1981). The North Atlantic Ocean during the last deglaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 35, 145215.Google Scholar
Sacco, F. (1937). Il Glacialismo veneto. L'Universo 7, 140.Google Scholar
Schlüchter, C. (1991). )Fazies und Chronologie des Letztzeitlichen Eisaufbaus im Alpenvorland der Schweiz.Frenzel, B. Klimageschichtiliche Probleme der letzten 130.000 Jahre Fischer Verlag, Stuttgart/New York.401407.Google Scholar
Schlüchter, C., and Röthlisberger, C. (1995). 100.000 Gletschergeschichte.In “Gletscher im ständigen Wandel“, Zürich,.4763.Google Scholar
Schlüchter, C., Maisch, M., Suter, J., Fitze, P., Keller, W.A., Burga, C.A., and Wynistorf, E. (1987). Das Schieferkohlenprofil von Gossau (Kanton Zürich) und seine stratigraphische Stellung innerhalb der letzten Eiszeit. Verhandlungen der Schweizerischen Naturforschenden Gesellschaft Zürich 132, 135174.Google Scholar
Sercelj, A. (1996). The origins and development of forests in Slovenia. Academia Scientiarum et Artium Slovenica, Classis IV. Dela Opera 35, 1142.Google Scholar
(1992). S.G.N. (Servizio Geologico Nazionale),. Carta Geologica d’Italia–1:50.000 Guida al Rilevamento. Istituito Poligrafico e Zecca dello Stato,, Roma., p. 203.Google Scholar
Shackleton, N.J., Hall, M.A., and Vincent, E. (2000). Phase relationships between millennial scale events 64000 to 24000 years ago. Paleoceanography 15, 6 565569.CrossRefGoogle Scholar
Sirovich, L. (1998). First evidence of an interglacial lake of Eemian age in northeast Italy. Journal of Quaternary Science 13, 1 6571.Google Scholar
Stockmarr, J. (1971). Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, 615621.Google Scholar
Stuiver, M., Grootes, P.M., and Braziunas, T.F. (1995). The GISP2 18O climate record of the past 16,500 years and the role of the sun, ocean and volcanoes. Quaternary Research 44, 341354.Google Scholar
Taramelli, T. (1875). Dei terreni morenici e alluvionali del Friuli. Annuali Regio Istituto Tecnico Udine 8, 191.Google Scholar
Tellini, A. (1892). Descrizione geologica della tavoletta “Majano”.. In Alto 3, : 1825., 4448., 7681.Google Scholar
Torre, D., Abbazzi, L., Ficcarelli, G., Masini, F., Mezzabotta, C., and Rook, L. (1996). Changes in mammal assemblages during the Lateglacial–earliest Holocene. Il Quaternario 9, 2 551560.Google Scholar
Traub, F., and Jerz, H. (1975). Ein Lö(profil von Duttendorf (Oberösterreich) gegenüber Burghausen an der Salzach. Zeitschrift für Gletscherkunde und Glazialgeologie 11, 175193.Google Scholar
Vaia, F. (1982). Depositi proglaciali nella pedemontana friulana. Incontri 1, 210.Google Scholar
van Geel, B., Bohncke, S.J.P., and Dee, H. (1981). A palaeoecological study of an upper Late Glacial–Holocene sequence from “De Borchert”. The Netherlands. Review of Palaeobotany and Palynology 31, 367449.CrossRefGoogle Scholar
van Husen, D. (1977). Zur Fazies und Stratigraphie der jungpleistozänen Ablagerungen im Trauntal. Jarbuch der Geologischen Bundesanstalt 120, 1130.Google Scholar
van Husen, D. (1990). The last interglacial–glacial cycle in the Eastern Alps. Quaternary International 3/4, 115121.Google Scholar
van Husen, D. (1997). LGM and Late-glacial fluctuations in the Eastern Alps. Quaternary International 38/39, 109118.CrossRefGoogle Scholar
van Husen, D. (2004). Quaternary glaciations in Austria.Elhers, J., Gibbard, P.L. Quaternary Glaciations–Extent and Chronology–Part I: Europe Elsevier, 113.Google Scholar
Venturini, C. (1988). L'anfiteatro morenico del Tagliamento: evidenze di archi würmiani sepolti nelle alluvioni dell'alta pianura friulana e relative implicazioni glaciali e neotettoniche. Gortania Atti Museo Friulano Storia Naturale 10, 6580.Google Scholar
Venturini, C. (2003). Il Friuli nel Quaternario: l’evoluzione del territorio.Muscio, G. Glacies Comune di Udine-Mus. Friul. St. Nat, Udine.Google Scholar
Zanferrari, A., Avigliano, R., Monegato, G., Paiero, G., Poli, M.E., Tunis, G.in press.Note illustrative della Carta Geologica d’Italia alla scala 1:50.000: Foglio 066 “Udine”. Servizio Geologico d’Italia–Regione Autonoma Friuli–Venezia Giulia..Google Scholar