Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T15:46:31.061Z Has data issue: false hasContentIssue false

Dietary ecological traits of extinct mammalian herbivores from the last glacial termination at the Pilauco Site, Chile

Published online by Cambridge University Press:  19 April 2022

Erwin González-Guarda*
Affiliation:
Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Libertador Bernardo O'Higgins, 611, Rancagua, Chile Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Zona Educacional 4, Campus Sescelades URV (Edifici W3), 43007 Tarragona, Spain
Carlos Tornero
Affiliation:
Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Zona Educacional 4, Campus Sescelades URV (Edifici W3), 43007 Tarragona, Spain Department of Prehistory, Autonomous University of Barcelona (UAB). 08193 Bellaterra, Spain
Alia Petermann-Pichincura
Affiliation:
Universitat Rovira i Virgili, Departament d'Història i Història de l'Art, Avinguda de Catalunya 35, 43002 Tarragona, Spain
Iván Ramírez-Pedraza
Affiliation:
Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Zona Educacional 4, Campus Sescelades URV (Edifici W3), 43007 Tarragona, Spain Universitat Rovira i Virgili, Departament d'Història i Història de l'Art, Avinguda de Catalunya 35, 43002 Tarragona, Spain
Mario Pino
Affiliation:
Instituto de Ciencias de la Tierra, Facultad de Ciencias, Edificio Emilio Pugín, Avenida Eduardo Morales Miranda, Universidad Austral de Chile, Valdivia, Chile. Fundación para los Estudios Patrimoniales Pleistocenos de Osorno (FEPPO)
Paulo Corti
Affiliation:
Laboratorio de Manejo y Conservación de Vida Silvestre, Instituto de Ciencia Animal y Programa de Investigación Aplicada en Fauna Silvestre, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
Leslie Cortés
Affiliation:
Independent researcher. Omar Elorza Smith 749, mirador del Limarí, Ovalle, región de Coquimbo, Chile
Felipe Osorio
Affiliation:
Gestión Ambiental Consultores. Gral del Canto 421, Providencia, Región Metropolitana
Úrzula Barrientos
Affiliation:
Fundación ReverdeSiendo, Departamento de Naturaleza y Medio Ambiente (NAM), ruta T-350, 34600 Curiñanco, Valdivia, Chile
Angelo Espinoza
Affiliation:
Centro de Rehabilitación de Fauna Silvestre, Instituto de Ciencias Clínicas Veterinarias y Programa de Investigación Aplicada en Fauna Silvestre, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
Jordi Agustí
Affiliation:
Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Zona Educacional 4, Campus Sescelades URV (Edifici W3), 43007 Tarragona, Spain ICREA. Pg. Lluís Company 23, 08010 Barcelona, Spain
*
*Corresponding author e-mail address: erwin.gonzalez@uoh.cl

Abstract

Stable isotopes are a powerful tool for reconstructing the past. However, environmental factors not previously considered can lead to misinterpretations. Our study presents a novel analysis of the feeding behavior of the megafauna that inhabited the Pilauco ecosystem in south-central Chile during the last glacial termination. We analyzed a suite of modern plant and animal samples from closed-canopy forests to establish an isotopic baseline with which to compare stable isotope results from fossil megafauna. Using the modern samples as a reference, the δ13C results from the Pilauco megafauna indicate feeding behaviors in forested areas. These results were then calibrated with dental calculus samples and coprolites, which suggest the coexistence of graze- and grass-dominated mixed-feeder diets. The δ15N values found in Pilauco megafauna are not consistent with modern reference data sets or with the low δ15N values of extinct proboscideans from other contemporaneous and nearby sites. Probably, the δ15N values of the Pilauco ecosystem were not primarily affected by climate, but rather by disturbance factors (e.g., grazing effect). Our results indicate that the Pilauco megafauna fed mainly on arboreal vegetation; however, non-isotopic proxies indicate that they were also eating open vegetation (e.g., herbs and grasses).

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguilera, F., 2010. Análisis de un Molar de Omnívoro de la Megafauna del Pleistoceno Tardío, Sitio Pilauco, Osorno, Chile. Undergraduate Thesis. Universidad Austral de Chile, Valdivia, 56 p.Google Scholar
Ambrose, S.H., 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17, 431451.Google Scholar
Ambrose, S.H., Norr, L., 1993. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In: Lambert, J.B., Grupe, G. (Eds.), Prehistoric Human Bone: Archaeology at the Molecular Level. Springer, Berlin, pp. 137.Google Scholar
Amundson, R., Austin, A.T., Schuur, E.A.G., Yoo, K., Matzek, V., Kendall, C., Uebersax, A., Brenner, D., Baisden, W.T., 2003. Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochemical Cycles 17, 1031. https://doi.org/10.1029/2002GB001903.CrossRefGoogle Scholar
Asevedo, L., Winck, G. R., Mothé, D., Avilla, L.S., 2012. Ancient diet of the Pleistocene gomphothere Notiomastodon platensis (Mammalia, Proboscidea, Gomphotheriidae) from lowland mid-latitudes of South America: Stereomicrowear and tooth calculus analyses combined. Quaternary International, 255, 4252.Google Scholar
Asevedo, L., Ranzi, A., Kalliola, R., Pärssinen, M., Ruokolainen, K., Cozzuol, M.A., Rodrigues do Nascimento, E., et al. , 2021. Isotopic paleoecology (δ13C, δ18O) of late Quaternary herbivorous mammal assemblages from southwestern Amazon. Quaternary Science Reviews 251, 106700. https://doi.org/10.1016/j.quascirev.2020.106700.CrossRefGoogle Scholar
Bargo, M.S., Vizcaíno, S.F., 2008. Paleobiology of Pleistocene ground sloths (Xenarthra, Tardigrada): biomechanics, morphogeometry and ecomorphology applied to the masticatory apparatus. Ameghiniana 45, 175196.Google Scholar
Bocherens, H., 2003. Isotopic biogeochemistry and the palaeoecology of the mammoth steppe fauna. Deinsea, 9(1), 5776.Google Scholar
Bocherens, H., Fizet, M., Mariotti, A., Billiou, D., Bellon, G., Borel, J.P., Simone, S. 1991. Biogéochimie isotopique (13C, 15N, 18O) et paléoécologie des ours pléistocènes de la grotte d'Aldène. Bulletin du Musée d'Anthropologie Préhistorique de Monaco 34, 2949.Google Scholar
Bocherens, H., Drucker, D.G., Madelaine, S., 2014. Evidence for a 15N positive excursion in terrestrial foodwebs at the Middle to Upper Palaeolithic transition in south-western France: implications for early modern human palaeodiet and palaeoenvironment. Journal of Human Evolution 69, 3143.CrossRefGoogle Scholar
Bocherens, H., Cotte, M., Bonini, R., Scian, D., Straccia, P., Soibelzon, L., Prevosti, F.J., 2016. Paleobiology of sabretooth cat Smilodon populator in the Pampean region (Buenos Aires Province, Argentina) around the Last Glacial Maximum: insights from carbon and nitrogen stable isotopes in bone collagen. Palaeogeography, Palaeoclimatology, Palaeoecology 449, 463474.CrossRefGoogle Scholar
Bocherens, H., Cotte, M., Bonini, R.A., Straccia, P., Scian, D., Soibelzon, L., Prevosti, F.J., 2017. Isotopic insight on paleodiet of extinct Pleistocene megafaunal Xenarthrans from Argentina. Gondwana Research 48, 714.CrossRefGoogle Scholar
Brochier, J.E., Villa, P., Giacomarra, M., Tagliacozzo, A., 1992. Shepherds and sediments: geo-ethnoarchaeology of pastoral sites. Journal of Anthropological Archaeology 11, 47102.CrossRefGoogle Scholar
Canales-Brellenthin, P., 2020. Micromammals (Mammal: Rodentia) from Pilauco: Identification and Environmental Considerations. In Pilauco: A Late Pleistocene Archaeo-paleontological Site (pp. 111121). Springer, Cham.CrossRefGoogle Scholar
Canti, M.G., 1998. The micromorphological identification of faecal spherulites from archaeological and modern materials. Journal of Archaeological Science 25, 435444.CrossRefGoogle Scholar
Carleton, S.A., Kelly, L., Anderson-Sprecher, R., del Rio, C.M., 2008. Should we use one-, or multi-compartment models to describe 13C incorporation into animal tissues?. Rapid Communications in Mass Spectrometry 22, 30083014.CrossRefGoogle ScholarPubMed
Cerling, T.E., Harris, J.M., 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347363.CrossRefGoogle ScholarPubMed
Clementz, M.T., Fox-Dobbs, K., Wheatley, P.V., Koch, P.L., Doak, D.F., 2009. Revisiting old bones: coupled carbon isotope analysis of bioapatite and collagen as an ecological and palaeoecological tool. Geological Journal 44, 605620.CrossRefGoogle Scholar
Coltrain, J.B., Harris, J.M., Cerling, T.E., Ehleringer, J.R., Dearing, M.-D., Ward, J., Allen, J., 2004. Rancho La Brea stable isotope biogeochemistry and its implications for the palaeoecology of late Pleistocene, coastal southern California. Palaeogeography, Palaeoclimatology, Palaeoecology 205, 199219.CrossRefGoogle Scholar
Cordova, C.E., Avery, G., 2017. African savanna elephants and their vegetation associations in the Cape Region, South Africa: opal phytoliths from dental calculus on prehistoric, historic and reserve elephants. Quaternary International 443, 189211.CrossRefGoogle Scholar
DeNiro, M.J., 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806809.CrossRefGoogle Scholar
Denton, G.H., Anderson, R.F., Toggweiler, J.R., Edwards, R.L., Schaefer, J.M., Putnam, A.E., 2010. The last glacial termination. Science 328, 16521656.CrossRefGoogle ScholarPubMed
Domingo, L., Prado, J.L., Alberdi, M.T., 2012. The effect of paleoecology and paleobiogeography on stable isotopes of Quaternary mammals from South America. Quaternary Science Reviews 55, 103113.CrossRefGoogle Scholar
Domingo, L., Tomassini, R.L., Montalvo, C.I., Sanz-Pérez, D., Alberdi, M.T., 2020. The Great American Biotic Interchange revisited: a new perspective from the stable isotope record of Argentine Pampas fossil mammals. Scientific Reports 10, 1680. https://doi.org/10.1038/s41598-020-58575-6.CrossRefGoogle ScholarPubMed
Drucker, D., Bocherens, H., Bridault, A., Billiou, D., 2003. Carbon and nitrogen isotopic composition of red deer (Cervus elaphus) collagen as a tool for tracking palaeoenvironmental change during the Late-Glacial and Early Holocene in the northern Jura (France). Palaeogeography, Palaeoclimatology, Palaeoecology 195, 375388.CrossRefGoogle Scholar
Drucker, D.G., Bridault, A., Hobson, K.A., Szuma, E., Bocherens, H., 2008. Can carbon-13 in large herbivores reflect the canopy effect in temperate and boreal ecosystems? Evidence from modern and ancient ungulates. Palaeogeography, Palaeoclimatology, Palaeoecology 266, 6982.CrossRefGoogle Scholar
Elton, S., 2008. The environmental context of human evolutionary history in Eurasia and Africa. Journal of Anatomy 212, 377393.Google ScholarPubMed
Evans, R.D., Ehleringer, J.R., 1994. Water and nitrogen dynamics in an arid woodland. Oecologia 99, 233242.CrossRefGoogle Scholar
Fariña, R.A., Blanco, R.E., 1996. Megatherium, the stabber. Proceedings of the Royal Society of London B: Biological Sciences 263, 17251729.Google ScholarPubMed
Farquhar, G.D., Ehleringer, J.R., Hubick, K.T., 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40, 503537.CrossRefGoogle Scholar
Feranec, R.S., 2003. Stable isotopes, hypsodonty, and the paleodiet of Hemiauchenia (Mammalia: Camelidae): a morphological specialization creating ecological generalization. Paleobiology, 29(2), 230242.2.0.CO;2>CrossRefGoogle Scholar
Fox-Dobbs, K., Leonard, J.A., Koch, P.L., 2008. Pleistocene megafauna from eastern Beringia: paleoecological and paleoenvironmental interpretations of stable carbon and nitrogen isotope and radiocarbon records. Palaeogeography, Palaeoclimatology, Palaeoecology 261, 3046.CrossRefGoogle Scholar
Genise, J.F., Fariña, J.L., 2012. Ants and xenarthrans involved in a Quaternary food web from Argentina as reflected by their fossil nests and palaeocaves. Lethaia 45, 411422.CrossRefGoogle Scholar
González, E., Prevosti, F. J., Pino, M., 2010. Primer registro de Mephitidae (Carnivora: Mammalia) para el Pleistoceno de Chile. Magallania (Punta Arenas), 38(2), 239248.CrossRefGoogle Scholar
González, E., Labarca, R., Chavez-Hoffmeister, M., Pino, M., 2014. First fossil record of the smallest deer cf. Pudu Molina, 1782 (Artiodactyla, Cervidae), in the late Pleistocene of South America. Journal of Vertebrate Paleontology 34, 483488.Google Scholar
González-Guarda, E., Domingo, L., Tornero, C., Pino, M., Fernández, M.H., Sevilla, P., Villavicencio, N., Agustí, J., 2017. Late Pleistocene ecological, environmental and climatic reconstruction based on megafauna stable isotopes from northwestern Chilean Patagonia. Quaternary Science Reviews 170, 188202.CrossRefGoogle Scholar
González-Guarda, E., Petermann-Pichincura, A., Tornero, C., Domingo, L., Agustí, J., Pino, M., Abarzúa, A.M., et al. , 2018. Multiproxy evidence for leaf-browsing and closed habitats in extinct proboscideans (Mammalia, Proboscidea) from Central Chile. Proceedings of the National Academy of Sciences of the United States of America 115, 92589263.CrossRefGoogle ScholarPubMed
Heaton, T.H.E., 1987. The 15N/14N ratios of plants in South Africa and Namibia: relationship to climate and coastal/saline environments. Oecologia 74, 236246.CrossRefGoogle ScholarPubMed
Hedges, R.E.M., Stevens, R.E., Richards, M.P., 2004. Bone as a stable isotope archive for local climatic information. Quaternary Science Reviews 23, 959965.CrossRefGoogle Scholar
Hedges, J.E.M., Stevens, R.E., Koch, P.L., 2006. Isotopes in bones and teeth. In: Leng, M. (Ed.), Isotopes in Palaeoenvironmental Research. Developments in Paleoenvironmental Research 10. Springer, Dordrecht, pp. 117145.CrossRefGoogle Scholar
Hershkovitz, P., 1982. Neotropical deer (Cervidae): part I. Pudus, Genus Pudu Gray. Fieldiana Zoology New Series 11, 186.Google Scholar
Hick, U., 1969. Successful raising of a pudu Pudu pudu at Cologne Zoo. International Zoo Yearbook 9, 110112.CrossRefGoogle Scholar
Hofman-Kamińska, E., Bocherens, H., Borowik, T., Drucker, D.G., Kowalczyk, R., 2018. Stable isotope signatures of large herbivore foraging habitats across Europe. PloS ONE 13, e0190723. https://doi.org/10.1371/journal.pone.0190723.CrossRefGoogle ScholarPubMed
Horrocks, M., Irwin, G.J., McGlone, M.S., Nichol, S.L., Williams, L.J., 2003. Pollen, phytoliths and diatoms in prehistoric coprolites from Kohika, Bay of Plenty, New Zealand. Journal of Archaeological Science 30, 1320.CrossRefGoogle Scholar
Iacumin, P., Nikolaev, V., Ramigni, M., 2000. C and N stable isotope measurements on Eurasian fossil mammals, 40,000 to 10,000 years BP: herbivore physiologies and palaeoenvironmental reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 163, 3347.CrossRefGoogle Scholar
Jouy-Avantin, F., Debenath, A., Moigne, A.-M., Moné, H., 2003. A standardized method for the description and the study of coprolites. Journal of Archaeological Science 30, 367372.Google Scholar
Katz, O., Cabanes, D., Weiner, S., Maeir, A.M., Boaretto, E., Shahack-Gross, R., 2010. Rapid phytolith extraction for analysis of phytolith concentrations and assemblages during an excavation: an application at Tell Es-Safi/Gath, Israel. Journal of Archaeological Science 37, 15571563.CrossRefGoogle Scholar
Koch, P.L., 2007. Chapter 5: Isotopic study of the biology of modern and fossil vertebrates. In: Michener, R., Lajtha, K. (Eds.), Stable Isotopes in Ecology and Environmental Science (Second Edition). Blackwell Publishing, Malden, Massachusetts, pp. 99154.Google Scholar
Koch, P.L., Tuross, N., Fogel, M.L., 1997. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. Journal of Archaeological Science 24, 417429.CrossRefGoogle Scholar
Korstanje, M.A., 2002. Microfossils in Camelid dung: taphonomic considerations for the archaeological study of agriculture and pastoralism. In: O'Connor, T. (Ed), Biosphere to Lithosphere: New Studies in Vertebrate Taphonomy. Proceedings of the 9th Conference of the International Council of Archaeozoology, Durham, England, August 2002. Oxbow Books, Oxford, pp. 6977.Google Scholar
Kuitems, M., van Kolfschoten, T., van der Plicht, J., 2015. Elevated δ15N values in mammoths: a comparison with modern elephants. Archaeological and Anthropological Sciences 7, 289295.CrossRefGoogle Scholar
Labarca, R., 2020. Taphonomy of the Pilauco site, northwestern Chilean Patagonia. In: Pino, M., Astorga, G. (Eds.), Pilauco: A Late Pleistocene Archaeo-paleontological Site: Osorno, Northwestern Patagonia and Chile. Springer, Cham, pp. 123156.CrossRefGoogle Scholar
Lira, M.P., Labarca, R., Fritte, D., Oyarzo, H., Pino, M., 2020. The site Los Notros: geology and first taxonomic descriptions. In: Pino, M., Astorga, G. (Eds.), Pilauco: A Late Pleistocene Archaeo-paleontological Site: Osorno, Northwestern Patagonia and Chile. Springer, Cham, pp. 231248.CrossRefGoogle Scholar
Longin, R., 1971. New method of collagen extraction for radiocarbon dating. Nature 230, 241242.CrossRefGoogle ScholarPubMed
Maher, L.J. Jr., 1981. Statistics for microfossil concentration measurements employing samples spiked with marker grains. Review of Palaeobotany and Palynology 32, 153191.CrossRefGoogle Scholar
Marino, B.D., McElroy, M.B., 1991. Isotopic composition of atmospheric CO2 inferred from carbon in C4 plant cellulose. Nature 349, 127131.CrossRefGoogle Scholar
Martínez, A.C., Yagueddú, C., 2012. Identificación de microrrestos vegetales en un coprolito humano del sitio Cerro Casa de Piedra, Santa Cruz, Argentina. Magallania 40, 333339.CrossRefGoogle Scholar
Meier, D., Merino, M.L., 2007. Distribution and habitat features of southern pudu (Pudu puda Molina, 1782) in Argentina. Mammalian Biology 72, 204212.CrossRefGoogle Scholar
Menegaz, A., Ortiz-Jaureguizar, E., 1995. Evolución biológica y climática de la Región Pampeana durante los últimos 5 millones de años. In: Artiodactilos, Los, Alberdi, M.T., Leone y, G., Tonni, E.P. (Eds.), Un ensayo de correlación con el Mediterráneo occidental. Monografías, Museo Nacional de Ciencias Naturales, CSIC, Madrid, pp. 311337.Google Scholar
Metcalfe, J.Z., Longstaffe, F.J., Hodgins, G., 2013. Proboscideans and paleoenvironments of the Pleistocene Great Lakes: landscape, vegetation, and stable isotopes. Quaternary Science Reviews 76, 102113.CrossRefGoogle Scholar
Moreno, P.I., 2020. Timing and structure of vegetation, fire, and climate changes on the Pacific slope of northwestern Patagonia since the last glacial termination. Quaternary Science Reviews 238, 106328. https://doi.org/10.1016/j.quascirev.2020.106328.CrossRefGoogle Scholar
Moreno, P., Denton, G.H., Moreno, P., Lowell, T.V., Putnam, A.E., Kaplan, M.R., 2015. Radiocarbon chronology of the last glacial maximum and its termination in northwestern Patagonia. Quaternary Science Reviews 122, 233249.CrossRefGoogle Scholar
Moreno, P.I., Videla, J., Valero-Garcés, B., Alloway, B.V., Heusser, L.E., 2018. A continuous record of vegetation, fire-regime and climatic changes in northwestern Patagonia spanning the last 25,000 years. Quaternary Science Reviews 198, 1536.Google Scholar
Mothé, D., dos Santos Avilla, L., Asevedo, L., Borges-Silva, L., Rosas, M., Labarca-Encina, R., Souberlich, R., et al. , 2017. Sixty years after ‘The Mastodonts of Brazil’: The state of the art of South American proboscideans (Proboscidea, Gomphotheriidae). Quaternary International 443, 5264.CrossRefGoogle Scholar
Murphy, B.P., Bowman, D.M., 2006. Kangaroo metabolism does not cause the relationship between bone collagen δ15N and water availability. Functional Ecology 20, 10621069.CrossRefGoogle Scholar
Pavez-Fox, M.A., Pino, M., Corti, P., 2015. Muzzle morphology and food consumption by pudu (Pudu puda Molina 1782) in south-central Chile. Studies on Neotropical Fauna and Environment 50, 107112.CrossRefGoogle Scholar
Pino, M., Chávez–Hoffmeister, M., Navarro-Harris, X., Labarca, R., 2013. The late Pleistocene Pilauco site, Osorno, south central Chile. Quaternary International 299, 312.CrossRefGoogle Scholar
Pino, M., Abarzúa, A.M., Astorga, G., Martel-Cea, A., Cossio-Montecinos, N., Navarro, R.X., Lira, M.P., et al. , 2019. Sedimentary record from Patagonia, southern Chile supports cosmic-impact triggering of biomass burning, climate change, and megafaunal extinctions at 12.8 ka. Scientific Reports 9, 4413. https://doi.org/10.1038/s41598-018-38089-y.CrossRefGoogle ScholarPubMed
Pino, M., Martel-Cea, A., Vega, R.M., Fritte, D., Soto-Bollmann, K., 2020. Geology, stratigraphy, and chronology of the Pilauco Site. In: Pino, M., Astorga, G. (Eds.), Pilauco: A Late Pleistocene Archaeo-paleontological Site. Osorno, Northwestern Patagonia and Chile. Springer, Cham, pp. 3353.CrossRefGoogle Scholar
Piperno, D.R. 2006. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists. AltaMira Press, Landham, Maryland, USA. 238 pp.Google Scholar
Power, R.C., Salazar-García, D.C., Wittig, R.M., Freiberg, M., Henry, A.G., 2015. Dental calculus evidence of Taï Forest Chimpanzee plant consumption and life history transitions. Scientific Reports 5, 15161. https://doi.org/10.1038/srep15161.CrossRefGoogle ScholarPubMed
Prevosti, F., Martin, F., 2013. Paleoecology of the mammalian predator guild of Southern Patagonia during the latest Pleistocene: ecomorphology, stable isotopes, and taphonomy. Quaternary International 305, 7484.CrossRefGoogle Scholar
Quiroz, D., Mella, M., Moreno, H., Duhart, P., Carrasco, F., Miralles, C., 2020. Geología del área Río Bueno-Paillaco, regiones de Los Ríos y Los Lagos. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica 210, p. 172.Google Scholar
Rawlence, N.J., Wood, J.R., Bocherens, H., Rogers, K.M., 2016. Dietary interpretations for extinct megafauna using coprolites, intestinal contents and stable isotopes: Complimentary or contradictory?. Quaternary Science Reviews 142, 173178.Google Scholar
Reinhard, K.J., Bryant, V. Jr., 1992. Chapter 6: Coprolite analysis: a biological perspective on archaeology. In: Schiffer, M. (Ed.), Archaeological Method and Theory Volume 4, University of Arizona Press, Tucson, pp. 245–88.Google Scholar
Rivals, F., Semprebon, G.M., Lister, A.M., 2019. Feeding traits and dietary variation in Pleistocene proboscideans: A tooth microwear review. Quaternary Science Reviews 219, 145153.CrossRefGoogle Scholar
Rodríguez, R., Marticorena, C., Alarcón, D., Baeza, C., Cavieres, L., Finot, V.L., Fuentes, N., et al. , 2018. Catálogo de las plantas vasculares de Chile. Gayana Botanica 75, 1430.CrossRefGoogle Scholar
Sánchez, B., Prado, J.L., Alberdi, M.T., 2004. Feeding ecology, dispersal, and extinction of South American Pleistocene gomphotheres (Gomphotheriidae, Proboscidea). Paleobiology 30, 146161.2.0.CO;2>CrossRefGoogle Scholar
Schwarcz, H.P., Dupras, T.L., Fairgrieve, S.I., 1999. 15N enrichment in the Sahara: in search of a global relationship. Journal of Archaeological Science 26, 629636.CrossRefGoogle Scholar
Semprebon, G.M., Rivals, F., 2010. Trends in the paleodietary habits of fossil camels from the Tertiary and Quaternary of North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 295(1-2), 131145.CrossRefGoogle Scholar
Stevens, R.E., Lister, A.M., Hedges, R.E.M., 2006. Predicting diet, trophic level and palaeoecology from bone stable isotope analysis: a comparative study of five red deer populations. Oecologia 149, 1221.CrossRefGoogle ScholarPubMed
Szpak, P., White, C.D., Longstaffe, F.J., Millaire, J.F., Sánchez, V.F.V., 2013. Carbon and nitrogen isotopic survey of northern Peruvian plants: baselines for paleodietary and paleoecological studies. PloS ONE 8, e53763. https://doi.org/10.1371/journal.pone.0053763.CrossRefGoogle ScholarPubMed
Tejada, J.V., Flynn, J.J., Antoine, P.O., Pacheco, V., Salas-Gismondi, R., Cerling, T.E., 2020. Comparative isotope ecology of western Amazonian rainforest mammals. Proceedings of the National Academy of Sciences of the United States of America 117, 2626326272.CrossRefGoogle ScholarPubMed
Tejada-Lara, J.V., MacFadden, B.J., Bermudez, L., Rojas, G., Salas-Gismondi, R., Flynn, J.J., 2018. Body mass predicts isotope enrichment in herbivorous mammals. Proceedings of the Royal Society B Biological Sciences 285, 20181020. https://doi.org/10.1098/rspb.2018.1020.Google ScholarPubMed
Tipple, B.J., Meyers, S.R., Pagani, M., 2010. Carbon isotope ratio of Cenozoic CO2: a comparative evaluation of available geochemical proxies. Paleoceanography 25, PA3202. https://doi.org/10.1029/2009PA001851.CrossRefGoogle Scholar
Tornero, C., Bălăşescu, A., Ughetto-Monfrin, J., Voinea, V., Balasse, M., 2013. Seasonality and season of birth in early Eneolithic sheep from Cheia (Romania): methodological advances and implications for animal economy. Journal of Archaeological Science 40, 40394055.CrossRefGoogle Scholar
van Klinken, G.J., 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science 26, 687695.CrossRefGoogle Scholar
Veit, H., 1994. Estratigrafía de capas sedimentarias y suelos correspondientes en el centro-sur de Chile. Revista Chilena de Historia Natural 67, 395403.Google Scholar
Vizcaíno, S.F., Cassini, G.H., Fernicola, J.C., Bargo, M.S., 2011. Evaluating habitats and feeding habits through ecomorphological features in glyptodonts (Mammalia, Xenarthra). Ameghiniana 48, 305319.CrossRefGoogle Scholar
Werner, R.A., Brand, W.A., 2001. Referencing strategies and techniques in stable isotope ratio analysis. Rapid Communications in Mass Spectrometry 15, 501519.Google ScholarPubMed
Wesolowski, V., de Souza, S.M.F.M., Reinhard, K.J., Ceccantini, G., 2007. Grânulos de amido e fitolitos em cálculos dentários humanos: contribuição ao estudo do modo de vida e subsistência de grupos sambaquianos do litoral sul do Brasil. Revista do Museu de Arqueologia e Etnologia (São Paulo) 17, 191210.Google Scholar
Wesolowski, V., de Souza, S.M.F.M., Reinhard, K.J., Ceccantini, G., 2010. Evaluating microfossil content of dental calculus from Brazilian sambaquis. Journal of Archaeological Science 37, 13261338.CrossRefGoogle Scholar
Weyrich, L.S., Duchene, S., Soubrier, J., Arriola, L., Llamas, B., Breen, J., Morris, A.G., et al. , 2017. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544, 357361.CrossRefGoogle ScholarPubMed
Zuloaga, F.O., Belgrano, M.J., Zanotti, C.A., 2019. Actualización del catálogo de las plantas vasculares del Cono Sur. Darwiniana 7, 208278.Google Scholar
Supplementary material: Image

González-Guarda et al. supplementary material

González-Guarda et al. supplementary material 1

Download González-Guarda et al. supplementary material(Image)
Image 4.7 MB
Supplementary material: File

González-Guarda et al. supplementary material

González-Guarda et al. supplementary material 2

Download González-Guarda et al. supplementary material(File)
File 9.3 MB
Supplementary material: Image

González-Guarda et al. supplementary material

González-Guarda et al. supplementary material 3

Download González-Guarda et al. supplementary material(Image)
Image 659.3 KB