Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-04-30T11:38:27.764Z Has data issue: false hasContentIssue false

13 - Klystrons

Published online by Cambridge University Press:  27 April 2018

Richard G. Carter
Affiliation:
Lancaster University
Get access

Summary

Gridded tubes use a control grid close to the cathode to modulate the electron current. In triodes and tetrodes the modulated current is collected by the anode and passes through the output resonant circuit. The amplification is class A if current flows at all times, class B is it flows for half the r.f. cycle and class C if less than half a cycle. The gain is reduced and the efficiency increases as the conduction time decreases. The design and construction of triodes and tetrodes and of amplifiers incorporating them is discussed. In an inductive output tube (IOT) a bunched electron beam is formed by a gridded electron gun. The bunched beam is passed through a gap in a cavity resonator which extracts r.f. power from the bunches. The design of IOTs and examples of their application are discussed.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Symons, R. S., ‘Klystrons for UHF television’, Proceedings of the IEEE, vol. 70, pp. 13041312, 1982.CrossRefGoogle Scholar
Chalk, G. O. and O’Loughlin, C. N., ‘Klystron amplifiers for television’, Electronic Equipment News, February 1968.Google Scholar
Smith, M. J. and Phillips, G., Power Klystrons Today. Taunton, England: Research Studies Press Ltd., 1995.Google Scholar
Sivan, L., Microwave Tube Transmitters. London: Chapman and Hall, 1994.Google Scholar
Carter, R. G., ‘R.F. power generation’, in Bailey, R., ed., Proceedings of the CERN Accelerator School ‘RF for Accelerators’, 8–17 June 2010, Ebeltoft, Denmark. Geneva: CERN, pp. 173–207, 2011.Google Scholar
Carter, R. G., ‘Acceleration technologies for charged particles: an introduction’, Contemporary Physics, vol. 52, pp. 1541, 2011.CrossRefGoogle Scholar
Caryotakis, G., ‘Klystrons’, in Barker, R. J. et al., eds, Modern Microwave and Millimeter-Wave Power Electronics. Piscataway, NJ: IEEE Press, pp. 107–170, 2005.Google Scholar
Staprans, A. et al., ‘High-power linear-beam tubes’, Proceedings of the IEEE, vol. 61, pp. 299330, 1973.CrossRefGoogle Scholar
Faillon, G. et al., ‘Microwave tubes’, in Eichmeier, J. A. and Thumm, M. K., eds, Vacuum Electronics: Components and Devices. Berlin: Springer-Verlag, pp. 1–84, 2008.Google Scholar
Gilmour, A. S., Jr., Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-Field Amplifiers and Gyrotrons. Norwood, MA: Artech House, 2011.Google Scholar
Vaughan, J. R. M., ‘The input gap voltage of a klystron’, IEEE Transactions on Electron Devices, vol. 32, pp. 25102511, 1985.CrossRefGoogle Scholar
Carlsten, B. E. and Ferguson, P., ‘Numerical determination of the matching conditions and drive characteristics for a klystron input cavity with beam’, IEEE Transactions on Electron Devices, vol. 44, pp. 894900, 1997.CrossRefGoogle Scholar
Faillon, G., ‘Klystrons de puissance à large bande’, Revue Technique Thomson-CSF, vol. 8, pp. 289331, June 1976.Google Scholar
Carlsten, B. E. et al., ‘Accuracy of the equivalent circuit model using a fixed beam impedance for klystron gain cavities’, IEEE Transactions on Plasma Science, vol. 26, pp. 17451749, 1998.CrossRefGoogle Scholar
Symons, R. S. and Vaughan, J. R. M., ‘Modification of klystron beam loading by initial velocity modulation of the beam’, in International Electron Devices Meeting, pp. 885–888, 1990.Google Scholar
White, G. R., ‘Small-signal theory of multicavity klystrons’, IRE Transactions on Electron Devices, vol. 6, pp. 449457, 1959.CrossRefGoogle Scholar
Symons, R. S. and Vaughan, R. M., ‘The linear theory of the Clustered-CavityTM Klystron’, IEEE Transactions on Plasma Science, vol. 22, pp. 713718, 1994.CrossRefGoogle Scholar
Antonsen, T. M., Jr. et al., ‘Advances in modeling and simulation of vacuum electronic devices’, Proceedings of the IEEE, vol. 87, pp. 804839, 1999.CrossRefGoogle Scholar
Carter, R. G., ‘Computer modelling of microwave tubes – a review’, in 2nd IEEE International Vacuum Electronics Conference 2001, Noordwijk, Netherlands, pp. 393–396, 2001.Google Scholar
Ludeking, L. D. et al., ‘Computational modeling’, in Barker, R. J. et al., eds, Modern Microwave and Millimetre-Wave Power Electronics. Piscataway NJ: IEEE Press, pp. 507–585, 2005.Google Scholar
Mihran, T. G., ‘The effect of space charge on bunching in a two-cavity klystron’, IRE Transactions on Electron Devices, vol. 6, pp. 5464, 1959.CrossRefGoogle Scholar
Kosmahl, H. G. and Albers, L. U., ‘Three-dimensional evaluation of energy extraction in output cavities of klystron amplifiers’, IEEE Transactions on Electron Devices, vol. 20, pp. 883890, 1973.CrossRefGoogle Scholar
Lien, E. L., ‘High-efficiency klystron amplifiers’, in Eighth International Conference on Microwaves and Optical Generation and Amplification, Amsterdam, The Netherlands, pp. 1121 to 11–27, 1970.Google Scholar
Mihran, T. G., ‘The effect of drift length, beam radius, and perveance on klystron power conversion efficiency’, IEEE Transactions on Electron Devices, vol. 14, pp. 201206, 1967.CrossRefGoogle Scholar
Tallerico, P. J., ‘Design considerations for the high-power multicavity klystron’, IEEE Transactions on Electron Devices, vol. 18, pp. 374382, 1971.CrossRefGoogle Scholar
Mihran, T. G. et al., ‘Electron bunching and output gap interaction in broad-band klystrons’, IEEE Transactions on Electron Devices, vol. 19, pp. 10111017, 1972.CrossRefGoogle Scholar
Koontz, R. F. et al., ‘Anomalous electron loading in SLAC 5045 klystron and relativistic klystron input cavities’, in IEEE Particle Accelerator Conference, pp. 159161, 1989.Google Scholar
Vaughan, J. R. M., ‘Multipactor’, IEEE Transactions on Electron Devices, vol. 35, pp. 11721180, 1988.CrossRefGoogle Scholar
Hill, C. and Carter, R. G., ‘Investigation of possible multipactor discharge in a klystron input cavity’, in 2006 IEEE International Vacuum Electronics Conference held jointly with 2006 IEEE International Vacuum Electron Sources, pp. 81–82, 2006.Google Scholar
Metivier, R. L., ‘Broadband klystrons for multimegawatt radars’, Microwave Journal, vol. 14, pp. 2932, April 1971.Google Scholar
Faillon, G., ‘A 200 kilowatts S band klystron with TWT bandwidth capability’, in International Electron Devices Meeting, pp. 283286, 1973.Google Scholar
Baikov, A. Y. et al., ‘Toward high-power klystrons with RF power conversion efficiency on the order of 90%’, IEEE Transactions on Electron Devices, vol. 62, pp. 34063412, 2015.CrossRefGoogle Scholar
Hechtel, J. R., ‘The effect of potential beam energy on the performance of linear beam devices’, IEEE Transactions on Electron Devices, vol. 17, pp. 9991009, 1970.CrossRefGoogle Scholar
Peter, W. et al., ‘Criteria for vacuum breakdown in RF cavities’, IEEE Transactions on Nuclear Science, vol. 30, pp. 34543456, 1983.CrossRefGoogle Scholar
Lee, T. et al., ‘A fifty megawatt klystron for the Stanford Linear Collider’, in International Electron Devices Meeting, pp. 144147, 1983.Google Scholar
Chodorow, M. and Wessel-Berg, T., ‘A high-efficiency klystron with distributed interaction’, IRE Transactions on Electron Devices, vol. 8, pp. 4455, 1961.CrossRefGoogle Scholar
Lee, T. G., ‘Multiple extraction cavities for high-power klystrons’, IEEE Transactions on Electron Devices, vol. 40, pp. 13291334, 1993.CrossRefGoogle Scholar
Luebke, W. and Caryotakis, G., ‘Development of a one megawatt CW Klystron’, Microwave Journal, vol. 9, pp. 4347, 1966.Google Scholar
Lee, T. et al., ‘The design and performance of a 150-MW klystron at S band’, IEEE Transactions on Plasma Science, vol. 13, pp. 545552, 1985.CrossRefGoogle Scholar
Fowkes, W. and Wu, E., ‘Multimode harmonic power output measurement of SLAC high power klystrons’, SLAC-PUB-3009, November 1982.Google Scholar
Symons, R. S., ‘Scaling laws and power limits for klystrons’, in International Electron Devices Meeting, pp. 156159, 1986.Google Scholar
Beunas, A. et al., ‘A high power long pulse high efficiency multi beam klystron’, in 5th Modulator-Klystron Workshop for Future Linear Colliders, 2001.Google Scholar
Phillips, R. M. and Sprehn, D. W., ‘High-power klystrons for the Next Linear Collider’, Proceedings of the IEEE, vol. 87, pp. 738751, 1999.CrossRefGoogle Scholar
Jensen, E. and Syratchev, I., ‘CLIC 50 MW L-band multi-beam klystron’, in AIP Conference Proceedings, p. 90, 2006.CrossRefGoogle Scholar
McCune, E. W., ‘A UHF-TV klystron using multistage depressed collector technology’, in IEEE International Electron Devices Meeting, pp. 160163, 1986.Google Scholar
McCune, E. W., ‘Klystron performance using a multistage depressed collector’, in 1987 International Electron Devices Meeting, pp. 157–159, 1987.CrossRefGoogle Scholar
Schmidt, W., ‘Multi-stage-depressed-collector klystron for high-efficiency UHF transmitter in high and medium power range’, in International Broadcasting Convention, pp. 44–45, 1990.Google Scholar
Perring, D., ‘A design for a pulsed, PPM focused depressed collector klystron for space (SAR) applications’, in Vakuumelektronik und Displays, Garmisch-Partenkirchen, Germany, 1989.Google Scholar
Neugebauer, W. and Mihran, T. G., ‘A ten-stage electrostatic depressed collector for improving klystron efficiency’, IEEE Transactions on Electron Devices, vol. 19, pp. 111121, 1972.CrossRefGoogle Scholar
Carter, R. G. and Jenkins, R. O., ‘Studies of the transient response of a klystron’, in IEEE International Vacuum Electronics Conference, Monterey, USA, pp. 312–313, 2008.Google Scholar
Lavine, T. L. et al., ‘Transient analysis of multicavity klystrons’, in IEEE Particle Accelerator Conference, pp. 126–128, 1989.Google Scholar
Yamamoto, K., ‘Nonlinearities of multicavity klystron amplifiers’, IEEE Transactions on Electron Devices, vol. 24, pp. 648654, 1977.CrossRefGoogle Scholar
Wohlbier, J. G. and Booske, J. H., ‘Nonlinear space charge wave theory of distortion in a klystron’, IEEE Transactions on Electron Devices, vol. 52, pp. 734741, May 2005.CrossRefGoogle Scholar
Faillon, G., ‘Technical and industrial overview of RF and microwave tubes for fusion’, Fusion Engineering and Design, vol. 46, pp. 371381, 1999.CrossRefGoogle Scholar
Bohlen, H., ‘Vacuum electronic device limitations for high-power RF sources’, in CWRF 2008, CERN, Geneva, 2008.Google Scholar
Kageyama, T., ‘A large-signal analysis of broad-band klystrons with design applications’, IEEE Transactions on Electron Devices, vol. ED-24, pp. 312, 1977.CrossRefGoogle Scholar
Branch, G. M., Jr., ‘Electron beam coupling in interaction gaps of cylindrical symmetry’, IRE Transactions on Electron Devices, vol. 8, pp. 193207, 1961.CrossRefGoogle Scholar
Barroso, J. J., ‘Design facts in the axial monotron’, IEEE Transactions on Plasma Science, vol. 28, pp. 652656, 2000.CrossRefGoogle Scholar
Barroso, J. J., ‘Electron bunching in split-cavity monotrons’, IEEE Transactions on Electron Devices, vol. 56, pp. 21502154, 2009.CrossRefGoogle Scholar
Carlsten, B. E. and Haynes, W. B., ‘Discrete monotron oscillator’, IEEE Transactions on Plasma Science, vol. 24, pp. 12491258, 1996.CrossRefGoogle Scholar
Day, W. R. and Noland, J. A., ‘The millimeter-wave extended interaction oscillator’, Proceedings of the IEEE, vol. 54, pp. 539543, 1966.CrossRefGoogle Scholar
Symons, R. S. et al., ‘An experimental Clustered-CavityTM klystron’, in International Electron Devices Meeting, pp. 153–156, 1987.Google Scholar
Schweppe, E. G. et al., ‘Design and results of a 1.3 MW CW klystron for LEP’, in Particle Accelerator Conference, vol. 2, pp. 1178–1180, 1993.CrossRefGoogle Scholar
O’Loughlin, C. et al., ‘Progress in high power klystron manufacturing at EEV’, in European Particle Accelerator Conference, pp. 1906–1908, 1994.Google Scholar
Mihran, T. G. et al., ‘Design and demonstration of a klystron with 62 percent efficiency’, IEEE Transactions on Electron Devices, vol. 18, pp. 124133, 1971.CrossRefGoogle Scholar
Kochetova, V. A. et al., ‘Criteria for optimum bunching and the shape of the optimum electron bunch in a drift klystron’, Radio Engineering and Electron Physics, vol. 26, pp. 8591, 1981.Google Scholar
Beck, A. H. W., Space-Charge Waves and Slow Electromagnetic Waves. London: Pergamon Press, 1958.Google Scholar
Choroba, S. et al., ‘Performance of an S-band klystron at an output power of 200MW’, in XIX International Linac Conference, Chicago, IL, pp. 917–919, 1998.Google Scholar
Sprehn, D. et al., ‘Current status of the next linear collider X-band klystron development program’, in EPAC 2004, Lucerne, Switzerland, pp. 1090–1092, 2004.Google Scholar
Konrad, G. T., ‘High power RF klystrons for linear accelerators’, SLAC-PUB-3324, 1984.Google Scholar
Lingwood, C. J. et al., ‘Automatic optimization of a klystron interaction structure’, IEEE Transactions on Electron Devices, vol. 60, pp. 26712676, 2013.CrossRefGoogle Scholar
Gewartowski, J. W. and Watson, H. A., Principles of Electron Tubes. Princeton, NJ: D. van Nostrand, 1965.Google Scholar
Fletcher, J. R. et al., ‘Design considerations for submillimeter-wave reflex klystrons’, IEEE Transactions on Microwave Theory and Techniques, vol. 52, pp. 23442351, 2004.CrossRefGoogle Scholar
Vancil, B. et al., ‘A medium power electrostatically focused multiple-beam klystron’, IEEE Transactions on Electron Devices, vol. 54, pp. 25822588, 2007.CrossRefGoogle Scholar
Fazio, M. V. et al., ‘A 500 MW, 1 μs pulse length, high current relativistic klystron’, IEEE Transactions on Plasma Science, vol. 22, pp. 740749, 1994.CrossRefGoogle Scholar
Boyd, M. R. et al., ‘The multiple-beam klystron’, IRE Transactions on Electron Devices, vol. 9, pp. 247252, 1962.CrossRefGoogle Scholar
Korolyov, A. N. et al., ‘Multiple-beam klystron amplifiers: performance parameters and development trends’, IEEE Transactions on Plasma Science, vol. 32, pp. 11091118, 2004.CrossRefGoogle Scholar
Gelvich, E. A. et al., ‘The new generation of high-power multiple-beam klystrons’, IEEE Transactions on Microwave Theory and Techniques, vol. 41, pp. 1519, 1993.CrossRefGoogle Scholar
Pobedonostev, A. S. et al., ‘Multiple-beam microwave tubes’, in IEEE MTT-S International Microwave Symposium Digest, vol. 2, pp. 1131–1134, 1993.Google Scholar
Beunas, A. and Faillon, G., ‘10 MW/1.5ms, L-band multi-beam klystron’, in Displays and Vacuum Electronics, Garmisch-Partenkirchen, Germany, pp. 257262, 1998.Google Scholar
Habermann, T. et al., ‘High-power high-efficiency L-band multiple-beam klystron development at CPI’, IEEE Transactions on Plasma Science, vol. 38, pp. 12641269, 2010.CrossRefGoogle Scholar
Zhang, R. and Wang, Y., ‘Design of the RF circuit for a coaxial cavity high-power multiple-beam klystron’, IEEE Transactions on Electron Devices, vol. 61, pp. 909914, 2014.CrossRefGoogle Scholar
Caryotakis, G. et al., ‘Design of a 11.4 GHz, 150-MW, sheet beam, PPM-focused klystron’, High Energy Density and High Power RF, vol. 691, pp. 2233, 2003.CrossRefGoogle Scholar
Pasour, J. et al., ‘Sheet beam extended interaction klystron (EIK) in W band’, in IEEE 14th International Vacuum Electronics Conference, Paris, France, pp. 12, 2013.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Klystrons
  • Richard G. Carter, Lancaster University
  • Book: Microwave and RF Vacuum Electronic Power Sources
  • Online publication: 27 April 2018
  • Chapter DOI: https://doi.org/10.1017/9780511979231.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Klystrons
  • Richard G. Carter, Lancaster University
  • Book: Microwave and RF Vacuum Electronic Power Sources
  • Online publication: 27 April 2018
  • Chapter DOI: https://doi.org/10.1017/9780511979231.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Klystrons
  • Richard G. Carter, Lancaster University
  • Book: Microwave and RF Vacuum Electronic Power Sources
  • Online publication: 27 April 2018
  • Chapter DOI: https://doi.org/10.1017/9780511979231.013
Available formats
×