Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T14:42:33.023Z Has data issue: false hasContentIssue false

18 - Quantitative Methods for Primate Biogeography and Macroecology

from Part III - GIS Analysis in Broad-Scale Space

Published online by Cambridge University Press:  29 January 2021

Francine L. Dolins
Affiliation:
University of Michigan, Dearborn
Christopher A. Shaffer
Affiliation:
Grand Valley State University, Michigan
Leila M. Porter
Affiliation:
Northern Illinois University
Jena R. Hickey
Affiliation:
University of Georgia
Nathan P. Nibbelink
Affiliation:
University of Georgia
Get access

Summary

Technological advances have brought a wealth of new data and analytical approaches to biogeography and macroecology (Graham et al. 2004; Kamilar & Beaudrot 2013). Many of these advances are centered on spatially explicit data analyses enabled by global positioning systems (GPS) and geographic information systems (GIS). In particular, geographic coordinates of species locales can be obtained through field surveys using GPS devices, triangulation with radio-telemetry transmitters, as well as through museum specimens with reliable collection locations (Graham et al. 2004). Although most studies using geographic data from point occurrence have focused on extant primates, there is increasing interest in the distribution of extinct species (Anemone et al. 2011). Known occurrence data of fossil taxa can be similarly acquired with GPS devices upon discovery or via specific and unambiguous descriptions of collection-site locations. In contrast, primate distributions were traditionally defined via range maps based on known or hypothesized occurrences (e.g., Wolfheim 1983). Range maps assume that a species is found throughout its range, when in reality we know that they are replete with gaps because not all terrain is suitable habitat for occupancy. Known localities from geographic point-location data obtained with GPS and GIS technology better represent species distributions and allow for more rigorous spatial and ecological modeling.

Type
Chapter
Information
Spatial Analysis in Field Primatology
Applying GIS at Varying Scales
, pp. 383 - 402
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida-Neto, M., Guimaraes, P. R., and Lewinsohn, T. M. 2007. On nestedness analyses: rethinking matrix temperature and anti-nestedness. Oikos 116: 716722.Google Scholar
Almeida-Neto, M., Guimarães, P., Guimarães, P. R. Jr., Loyola, R. D., and Ulrich, W. 2008. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117: 12271239.Google Scholar
Anemone, R. L., Conroy, G. C., and Emerson, C. W. 2011. GIS and paleoanthropology: incorporating new approaches from the geospatial sciences in the analysis of primate and human evolution. Yearbook of Physical Anthropology 54: 1946.Google Scholar
Atmar, W. and Patterson, B. D. 1993. The measure of order and disorder in the distribution of fragmented habitat. Oecologia 96: 373382.Google Scholar
Baselga, A., Jimenez-Valverde, A., and Niccolini, G. 2007. A multiple-site similarity measure independent of richness. Biology Letters 3 (6): 642645.Google Scholar
Batjes, N. H. 2009. Harmonized soil profile data for applications at global and continental scales: updates to the WISE database. Soil Use and Management 25: 124127.Google Scholar
Beaudrot, L. H. and Marshall, A. J. 2011. Primate communities are structured more by dispersal limitation than by niches. Journal of Animal Ecology 80: 332341.Google Scholar
Beaudrot, L., Struebig, M. J., Meijaard, E., et al. 2013. Co-occurrence patterns of Bornean vertebrates suggest competitive exclusion is strongest in distantly related taxa. Oecologia 173: 10531062.Google Scholar
Beaudrot, L., Kamilar, J. M., Marshall, A. J., and Reed, K. E. 2014. African primate assemblages exhibit a latitudinal gradient in dispersal limitation. International Journal of Primatology 35: 10881104.Google Scholar
Bivand, R. 2013. spdep. R package.Google Scholar
Blair, M. E., Sterling, E. J., Dusch, M., Raxworthy, C. J., and Pearson, R. G. 2013. Ecological divergence and speciation between lemur (Eulemur) sister species in Madagascar. Journal of Evolutionary Biology 26: 17901801.CrossRefGoogle ScholarPubMed
Boubli, J. P. and de Lima, M. G. 2009. Modeling the geographical distribution and fundamental niches of Cacajao spp. and Chiropotes israelita in northwestern Amazonia via a maximum entropy algorithm. International Journal of Primatology 30: 217228.Google Scholar
Cardillo, M. and Meijaard, E. 2010. Phylogeny and co-occurrence of mammal species on Southeast Asian islands. Global Ecology and Biogeography 19(4): 465474.CrossRefGoogle Scholar
Carroll, M. L., Townshend, J. R., DiMiceli, C. M., Noojipady, P., and Sohlberg, R. A. 2009. A new global raster water mask at 250 m resolution. International Journal of Digital Earth 2: 291308.CrossRefGoogle Scholar
Carstensen, D. W., Lessard, J. P., Holt, B. G., Borregaard, M. K., and Rahbek, C. 2013. Introducing the biogeographic species pool. Ecography 36: 19.Google Scholar
Carvalho, J. C., Cardoso, P., and Gomes, P. 2012. Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Global Ecology and Biogeography 21 (7): 760771.CrossRefGoogle Scholar
Dapporto, L., Ramazzotti, M., Fattorini, S., et al. 2013. recluster: an unbiased clustering procedure for beta-diversity turnover. Ecography. DOI: 10.1111/j.1600-0587.2013.00444.x.Google Scholar
Diamond, J. M. 1975. Assembly of species communities. Pages 342444 in Ecology and Evolution of Communities, Cody, M. L. and Diamond, J. M. (Eds.). Cambridge, MA: Harvard University Press.Google Scholar
Dormann, C. F., McPherson, J. M., Araujo, M. B., et al. 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30: 609628.CrossRefGoogle Scholar
Elith, J. and Graham, C. H. (2009) Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32: 6677.CrossRefGoogle Scholar
Elith, J., Graham, C. H., Anderson, R. P., et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129151.Google Scholar
Fayle, T. M. and Manica, A. 2010. Reducing over-reporting of deterministic co-occurrence patterns in biotic communities. Ecological Modelling 221: 22372242.Google Scholar
Fielding, A. H. 2007. Cluster and Classification Techniques for the Biosciences. Cambridge University Press, New York.Google Scholar
Fleagle, J. G. and Reed, K. E. 1996. Comparing primate communities: a multivariate approach. Journal of Human Evolution 30: 489510.Google Scholar
Fortin, M.-J. and Dale, M. R. T. 2005. Spatial Analysis: A Guide for Ecologists. Cambridge University Press, Cambridge.Google Scholar
Fox, B. J. 1987. Species assembly and the evolution of community structure. Evolutionary Ecology 1: 201213.CrossRefGoogle Scholar
Freckleton, R. P. and Jetz, W. 2009. Space versus phylogeny: disentangling phylogenetic and spatial signals in comparative data. Proceedings of the Royal Society B 276: 2130.Google Scholar
Ganzhorn, J. U. 1998. Nested patterns of species composition and their implications for lemur biogeography in Madagascar. Folia Primatologica 69 (Suppl. 1): 332341.CrossRefGoogle Scholar
Goslee, S. and Urban, D. 2013. ecodist: Dissimilarity-based functions for ecological analysis. R package.Google Scholar
Gotelli, N. J. and McCabe, D. J. 2002. Species co-occurrence: a meta-analysis of J. M. Diamond’s assembly rules model. Ecology Letters 83: 20912096.Google Scholar
Gotelli, N. J., Hart, E. M., and Ellison, A. M. 2015. EcoSimR: null model analysis for ecological data. R package.Google Scholar
Gower, J. C. and Hand, D. J. 1995. Biplots. Chapman and Hall/CRC, London.Google Scholar
Graham, C. H., Ferrier, S., Huettman, F., Moritz, C., and Peterson, A. T. 2004. New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology and Evolution 19 (9): 497503.Google Scholar
Guillot, G. and Rousset, F. 2013. Dismantling the Mantel tests. Methods in Ecology and Evolution. DOI: 10.1111/2041-210x.12018.CrossRefGoogle Scholar
Guimarães, P. R. and Guimarães, P. 2006. Improving the analyses of nestedness for large sets of matrices. Environmental Modelling and Software 21: 15121513.Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 19651978.Google Scholar
Hutchinson, G. E. 1959. Homage to Santa Rosalia, or why are there so many kinds of animals? American Naturalist 93: 145159.Google Scholar
Junker, J., Blake, S., Boesch, C., et al. 2012. Recent decline in suitable environmental conditions for African great apes. Diversity and Distributions 18: 10771091.Google Scholar
Kamilar, J. M. 2009. Environmental and geographic correlates of the taxonomic structure of primate communities. American Journal of Physical Anthropology 139: 382393.Google Scholar
Kamilar, J. M. and Atkinson, Q. D. 2013. Cultural assemblages show nested structure in humans and chimpanzees but not orangutans. PNAS 111: 111115.Google Scholar
Kamilar, J. M. and Beaudrot, L. 2013. Understanding primate communities: recent developments and future directions. Evolution and Anthropology 22: 174185.Google Scholar
Kamilar, J. M. and Bradley, B. J. 2011. Interspecific variation in primate coat color supports Gloger’s rule. Journal of Biogeography 38: 22702277.Google Scholar
Kamilar, J. M. and Ledogar, J. A. 2011. Species co-occurrence patterns and dietary resource competition in primates. American Journal of Physical Anthropology 144: 131139.Google Scholar
Kamilar, J. M. and Marshack, J. L. 2012. Does geography or ecology best explain “cultural” variation among chimpanzee communities? Journal of Human Evolution 62: 256260.Google Scholar
Kamilar, J. M. and Muldoon, K. M. 2010. The climatic niche diversity of Malagasy primates: a phylogenetic approach. PLoS ONE 5: e11073.Google Scholar
Kamilar, J. M., Muldoon, K. M., Lehman, S. M., and Herrera, J. P. 2012. Testing Bergmann’s rule and the resource seasonality hypothesis in Malagasy primates using GIS-based climate data. American Journal of Physical Anthropology 147: 401408.Google Scholar
Kamilar, J. M., Beaudrot, L., and Reed, K. E. 2014. The influences of species richness and climate on the phylogenetic structure of African haplorhine and strepsirrhine primate communities. International Journal of Primatology 35: 11051121.Google Scholar
Kamilar, J. M., Beaudrot, L., and Reed, K. E. 2015. Climate and species richness predict the phylogenetic structure of African mammal communities. PLoS ONE 10: e0121808.CrossRefGoogle ScholarPubMed
Kamilar, J. M., Blanco, M., and Muldoon, K. M. 2016. Ecological niche modeling of mouse lemurs (Microcebus spp.) and its implications for their species diversity and biogeography. Pages 449461 in Dwarf and Mouse Lemurs of Madagascar: Biology, Behavior and Conservation Biogeography of the Cheirogaleidae. Lehman, S. M., Radespiel, U., and Zimmermann, E. (Eds.). Cambridge University Press, Cambridge.Google Scholar
Kissling, W. D., Dormann, C. F., and Groeneveld, J., et al. 2012. Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. Journal of Biogeography 39: 21632178.Google Scholar
Koleff, P., Gaston, K. J., and Lennon, J. J. 2003. Measuring beta diversity for presence–absence data. Journal of Animal Ecology 72(3): 367382.Google Scholar
Krebs, C. J. 1999. Ecological Methodology, 2nd edition. Benjamin Cummings, Menlo Park, CA.Google Scholar
Kreft, H. and Jetz, W. 2010. A framework for delineating biogeographical regions based on species distributions. Journal of Biogeography 37 (11): 20292053.Google Scholar
Legendre, P. 2000. Comparison of permutation methods for the partial correlation and partial Mantel tests. Journal of Statistical Computation and Simulation 67: 3773.CrossRefGoogle Scholar
Legendre, P. and Legendre, L. 1998. Numerical EcologyElsevier Science BV, Amsterdam.Google Scholar
Legendre, P., Borcard, D., Peres-Neto, P. R. 2005. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs 75 (4): 435450.Google Scholar
Lehman, S. M. 2006. Nested distribution patterns and the historical biogeography of the primates of Guyana. Pages 6380 in Primate Biogeography. Lehman, S. M. and Fleagle, J. G. (Eds.). Springer, New York.Google Scholar
Magurran, A. E. 1988. Ecological Diversity and Its Measurements. Princeton University Press, Princeton.Google Scholar
Manly, B. F. 2005. Multivariate Statistical Methods: a Primer. CRC Press, Boca Raton, FL.Google Scholar
Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Research 27: 209220.Google Scholar
McGarigal, K., Cushman, S., and Stafford, S. 2000. Multivariate Statistics for Wildlife and Ecology Research. Springer, New York.Google Scholar
Merow, C., Smith, M. J., and Silander, J. A. 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography. DOI: 10.1111/j.1600-0587.2013.07872.x.Google Scholar
Oksanen, J., Blanchet, F. G., Kindt, R., et al. 2013. vegan: community ecology package. R package.Google Scholar
Ossi, K. M. and Kamilar, J. M. 2006. Environmental and phylogenetic correlates of Eulemur behavior and ecology (Primates: Lemuridae). Behavioral Ecology and Sociobiology 61: 5364.Google Scholar
Patterson, B. D. 1987. The principle of nested subsets and its implications for biological conservation. Conservation and Biology 1(4): 323334.Google Scholar
Peres, C. A. 1997. Primate community structure at twenty western Amazonian flooded and unflooded forests. Journal of Tropical Ecology 13: 381405.Google Scholar
Phillips, S. J. and Dudık, M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161175.Google Scholar
Phillips, S. J., Anderson, R. P., and Schapire, R. E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modeling 190: 231259.Google Scholar
Primack, R. and Corlett, R. 2005. Tropical Rain Forests: An Ecological and Biogeographical Comparison. Blackwell Publishing, New York.Google Scholar
Rangel, T. F. L. V. B., Diniz-Filho, J. A. F., and Bini, L. M. 2010. SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography 33: 4650.CrossRefGoogle Scholar
Reed, K. E. and Bidner, L. R. 2004. Primate communities: past, present, and possible future. American Journal of Physical Anthropology 47: 239.Google Scholar
Rosenberg, M. 2001. PASSAGE: Pattern Analysis, Spatial Statistics, and Geographic Exegesis Version 1.0. Arizona State University.Google Scholar
Sanderson, J. G., Diamond, J. M., and Pimm, S. L. 2009. Pairwise co-existence of Bismark and Solomon landbird species. Evolutionary Ecology Research 11: 771786.Google Scholar
Sfenthourakis, S., Giokas, S., and Tzanatos, E. 2004. From sampling stations to archipelagos: investigating aspects of the assemblage of insular biota. Global Ecology and Biogeography 13: 2335.Google Scholar
Sfenthourakis, S., Tzanatos, E., and Giokas, S. 2005. Species co-occurrence: the case of congeneric species and a causal approach to patterns of species association. Global Ecology and Biogeography 15: 3949.Google Scholar
Smouse, P., Long, J., and Sokal, R. R. 1986. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Systematic Zoology 35: 627632.CrossRefGoogle Scholar
Sokal, R. R., Oden, N. L., Walker, J., and Waddle, D. M. 1997. Using distance matrices to choose between competing theories and an application to the origin of modern humans. Journal of Human Evolution 32: 501522.Google Scholar
Stone, L. and Roberts, A., 1990. The checkerboard score and species distributions. Oecologia, 85(1): 7479.Google Scholar
Strong, D. R., Simberloff, D., Abele, L. G., and Thistle, A. B. (Eds.). 1984. Ecological Communities. Princeton University Press, Princeton.Google Scholar
Tabachnick, B. G. and Fidell, L. S. 1989. Using Multivariate Statistics, 2nd edition. Harper and Row, New York.Google Scholar
ter Braak, C. J. F. and Smilauer, P. 2002. CANOCO for Windows Version 4.5. Microcomputer Power.Google Scholar
Thorn, J. S., Nijman, V., Smith, D., and Nekaris, K. A. I. 2009. Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Diversity and Distributions 15: 289298.Google Scholar
Thorne, J. H., Seo, C., and Basabose, A., et al. 2013. Alternative biological assumptions strongly influence models of climate change effects on mountain gorillas. Ecosphere 4: 108.CrossRefGoogle Scholar
Tuomisto, H. 2010a. A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33(1): 222.Google Scholar
Tuomisto, H. 2010b. A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography 33(1): 2345.Google Scholar
Ulrich, W. 2008. Pairs: a FORTRAN program for studying pair-wise species associations in ecological matrices. Available at: www.uni.torun.pl/~ulrichw.Google Scholar
Ulrich, W. and Gotelli, N. J. 2012. Pattern detection in null model analysis. Oikos. DOI: 10.1111/j.1600-0706.2012.20325.x.Google Scholar
Vidal-García, F. and Serio-Silva, J. C. 2011. Potential distribution of Mexican primates: modeling the ecological niche with the maximum entropy algorithm. Primates 52: 261270.Google Scholar
Whiten, A., Goodall, J., McGrew, W. C., et al. 2001. Charting cultural variation in chimpanzees. Behaviour 138: 14811516.Google Scholar
Wilson, J. B. 1989. A null model of guild proportionality, applied to stratification of a New-Zealand temperate rain-forest. Oecologia 80(2): 263267.Google Scholar
Wolfheim, J. H. 1983. Primates of the World: Distribution, Abundance, and Conservation. University of Washington Press, Seattle.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×