Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T03:11:15.426Z Has data issue: false hasContentIssue false

Part III - GIS Analysis in Broad-Scale Space

Published online by Cambridge University Press:  29 January 2021

Francine L. Dolins
Affiliation:
University of Michigan, Dearborn
Christopher A. Shaffer
Affiliation:
Grand Valley State University, Michigan
Leila M. Porter
Affiliation:
Northern Illinois University
Jena R. Hickey
Affiliation:
University of Georgia
Nathan P. Nibbelink
Affiliation:
University of Georgia
Get access
Type
Chapter
Information
Spatial Analysis in Field Primatology
Applying GIS at Varying Scales
, pp. 307 - 433
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Aguilera, P. A., Fernández, A., Reche, F., and Rumí, R. 2010. Hybrid Bayesian network classifiers: application to species distribution models. Environmental Modelling and Software 25: 16301639.Google Scholar
Allouche, O., Tsoar, A., and Kadmon, R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 12231232.Google Scholar
Anderson, R. P. and Raza, A. 2010. The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. Journal of Biogeography 37: 13781393.Google Scholar
Anderson, R. P., Lew, D., and Peterson, A. T. 2003. Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecological Modelling 162: 211232.CrossRefGoogle Scholar
Araújo, M. B. and New, M. 2007. Ensemble forecasting of species distributions. Trends in Ecology & Evolution 22: 4247.Google Scholar
Araújo, M. B., Pearson, R. G., Thuiller, W., and Erhard, M. 2005. Validation of species–climate impact models under climate change. Global Change Biology 11: 15041513.CrossRefGoogle Scholar
Barry, S. and Elith, J. 2006. Error and uncertainty in habitat models. Journal of Applied Ecology 43: 413423.CrossRefGoogle Scholar
Beck, J., Ballesteros-Mejia, L., Nagel, P., and Kitching, I. J. 2013. Online solutions and the “Wallacean shortfall”: what does GBIF contribute to our knowledge of species’ ranges? Diversity and Distributions 19: 10431050.CrossRefGoogle Scholar
Beeton, T. A., Glantz, M. M., Trainer, A. K., Temirbekov, S. S., and Reich, R. M. 2013. The fundamental hominin niche in late Pleistocene Central Asia: a preliminary refugium model. Journal of Biogeography 41: 95110.Google Scholar
Bett, N. N., Blair, M. E., and Sterling, E. J. 2012. Ecological niche conservatism in doucs (genus Pygathrix). International Journal of Primatology 33: 972988.CrossRefGoogle Scholar
Bjork, A., Liu, W., Wertheim, J. O., Hahn, B. H., and Worobey, M. 2011. Evolutionary history of chimpanzees inferred from complete mitochondrial genomes. Molecular Biology and Evolution 28: 615623.Google Scholar
Blair, M. E. and Melnick, D. J. 2012a. Genetic evidence for dispersal by both sexes in the Central American squirrel monkey, Saimiri oerstedii citrinellus. American Journal of Primatology 74: 3747.CrossRefGoogle ScholarPubMed
Blair, M. E. and Melnick, D. J. 2012b. Scale-dependent effects of a heterogeneous landscape on genetic differentiation in the Central American squirrel monkey (Saimiri oerstedii). PLoS ONE 7: e43027.Google Scholar
Blair, M. E., Rose, R. A., Ersts, P. J., et al. 2012. Incorporating climate change into conservation planning: identifying priority areas across a species’ range. Frontiers of Biogeography 4: 157167.CrossRefGoogle Scholar
Blair, M. E., Gutiérrez-Espeleta, G. A., and Melnick, D. J. 2013a. Subspecies of the Central American squirrel monkey (Saimiri oerstedii) as units for conservation. International Journal of Primatology 34: 8698.Google Scholar
Blair, M. E., Sterling, E. J., Dusch, M., Raxworthy, C. J., and Pearson, R. G. 2013b. Ecological divergence and speciation between lemur (Eulemur) sister species in Madagascar. Journal of Evolutionary Biology 26: 17901801.Google Scholar
Booth, T. H., Nix, H. A., Busby, J. R., and Hutchinson, M. F. 2014. BIOCLIM: the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Diversity and Distributions 20: 19.Google Scholar
Boria, R. A., Olson, L. E., Goodman, S. M., and Anderson, R. P. 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling 275: 7377.Google Scholar
Boubli, J. P., and de Lima, M. G. 2009. Modeling the geographical distribution and fundamental niches of Cacajao spp. and Chiropotes israelita in northwestern Amazonia via a maximum entropy algorithm. International Journal of Primatology 30: 217228.Google Scholar
Braunisch, V., Coppes, J., Arlettaz, R., et al. 2013. Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change. Ecography 36: 971983.Google Scholar
Breiman, L. 2001. Statistical modeling: the two cultures. Statistical Science 16: 199215.Google Scholar
Brown, J. L., and Yoder, A. D. 2015. Shifting ranges and conservation challenges for lemurs in the face of climate change. Ecology and Evolution 5: 11311142.CrossRefGoogle ScholarPubMed
Busby, J. R. 1991. BIOCLIM: a bioclimate analysis and prediction system. Plant Protection Quarterly 6: 89.Google Scholar
Calvignac-Spencer, S., Merkel, K., Kutzner, N., et al. 2013. Carrion fly-derived DNA as a tool for comprehensive and cost-effective assessment of mammalian biodiversity. Molecular Ecology 22: 915924.CrossRefGoogle ScholarPubMed
Campos, F. A. and Jack, K. M. 2013. A potential distribution model and conservation plan for the critically endangered Ecuadorian capuchin, Cebus albifrons aequatorialis. International Journal of Primatology 34: 899916.CrossRefGoogle Scholar
Carpenter, G., Gillison, A. N., and Winter, J. 1993. DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodiversity and Conservation 2: 667680.Google Scholar
Chapman, C. A., Chapman, L. J., and Gillespie, T. R. 2002. Scale issues in the study of primate foraging: red colobus of Kibale National Park. American Journal of Physical Anthropology 117: 349363.Google Scholar
Chatterjee, H. J., Tse, J. S. Y., and Turvey, S. T. 2012. Using ecological niche modelling to predict spatial and temporal distribution patterns in Chinese gibbons: lessons from the present and the past. Folia Primatologica 83: 8599.Google Scholar
Chiou, K. L., Pozzi, L., Lynch Alfaro, J. W., and Di Fiore, A. 2011. Pleistocene diversification of living squirrel monkeys (Saimiri spp.) inferred from complete mitochondrial genome sequences. Molecular Phylogenetics and Evolution 59: 736745.Google Scholar
Conroy, G. C., Emerson, C. W., Anemone, R. L., and Townsend, K. E. B. 2012. Let your fingers do the walking: a simple spectral signature model for “remote” fossil prospecting. Journal of Human Evolution 63: 7984.CrossRefGoogle ScholarPubMed
Coudrat, C. and Nekaris, K. A.-I. 2013. Modelling niche differentiation of co-existing, elusive and morphologically similar species: a case study of four macaque species in Nakai-Nam Theun National Protected Area, Laos. Animals 3: 4562.Google Scholar
Cutler, D. R., Edwards, T. C. Jr, Beard, K. H., et al. 2007. Random forests for classification in ecology. Ecology 88: 27832792.CrossRefGoogle ScholarPubMed
Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C., and Mace, G. M. 2011. Beyond predictions: biodiversity conservation in a changing climate. Science 332: 5358.Google Scholar
De’ath, G. and Fabricius, K. E. 2000. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81: 31783192.CrossRefGoogle Scholar
Dormann, C. F., McPherson, J. M., Araújo, M. B., et al. 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30: 609628.CrossRefGoogle Scholar
Dormann, C. F., Elith, J., Bacher, S., et al. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 2746.Google Scholar
Drake, J. M., Randin, C., and Guisan, A. 2006. Modelling ecological niches with support vector machines. Journal of Applied Ecology 43: 424432.Google Scholar
Elith, J. and Graham, C. H. 2009. Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32: 6677.Google Scholar
Elith, J., Graham, C. H., Anderson, R. P., et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129151.Google Scholar
Elith, J., Leathwick, J. R., and Hastie, T. 2008. A working guide to boosted regression trees. Journal of Animal Ecology 77: 802813.Google Scholar
Elith, J., Phillips, S. J., Hastie, T., et al. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17: 4357.Google Scholar
Engler, J. O., Rödder, D., Elle, O., Hochkirch, A., and Secondi, J. 2013. Species distribution models contribute to determine the effect of climate and interspecific interactions in moving hybrid zones. Journal of Evolutionary Biology 26: 24872496.Google Scholar
Farber, O. and Kadmon, R. 2003. Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecological Modelling 160: 115130.CrossRefGoogle Scholar
Ferrier, S., Drielsma, M., Manion, G., and Watson, G. 2002. Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales: II. Community-level modelling. Biodiversity and Conservation 11: 23092338.Google Scholar
Ford, S. M. 2006. The biogeographic history of Mesoamerican primates. Pages 81114 in New Perspectives in the Study of Mesoamerican Primates. Estrada, A., Garber, P. A., Pavelka, M., and Luecke, L. (Eds.). Springer, New York.CrossRefGoogle Scholar
Franklin, J. 2009. Mapping Species Distributions: Spatial Inference and Prediction. Cambridge University Press, Cambridge.Google Scholar
Friedman, J. H. 1991. Multivariate adaptive regression splines. The Annals of Statistics 19: 167.Google Scholar
Friedman, N., Geiger, D., and Goldszmidt, M. 1997. Bayesian network classifiers. Machine Learning 29: 131163.Google Scholar
Georges, D. and Thuiller, W. 2013. An example of species distribution modeling with biomod2. R CRAN Project. Tutorial supplied with the “biomod2” package.Google Scholar
Guisan, A. and Thuiller, W. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8: 9931009.Google Scholar
Guisan, A., Edwards, T. C. Jr., and Hastie, T. 2002. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling 157: 89100.Google Scholar
Guo, Q. and Liu, Y. 2010. ModEco: an integrated software package for ecological niche modeling. Ecography 33: 637642.Google Scholar
Guo, Q., Kelly, M. and Graham, C. H. 2005. Support vector machines for predicting distribution of Sudden Oak Death in California. Ecological Modelling 182: 7590.CrossRefGoogle Scholar
Heikkinen, R. K., Luoto, M., Virkkala, R., Pearson, R. G., and Körber, J.-H. 2007. Biotic interactions improve prediction of boreal bird distributions at macro-scales. Global Ecology and Biogeography 16: 754763.Google Scholar
Hershkovitz, P. 1984. Taxonomy of squirrel monkeys genus Saimiri (Cebidae, Platyrrhini): a preliminary report with description of a hitherto unnamed form. American Journal of Primatology 7: 155210.Google Scholar
Hickey, J. R., Nackoney, J., Nibbelink, N. P., et al. 2013. Human proximity and habitat fragmentation are key drivers of the rangewide bonobo distribution. Biodiversity and Conservation 22: 30853104.Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 19651978.Google Scholar
Hijmans, R. J. and Elith, J. 2013. Species distribution modeling with R. R CRAN Project. Tutorial supplied with the “dismo” package.Google Scholar
Hirzel, A. H. and Le Lay, G. 2008. Habitat suitability modelling and niche theory. Journal of Applied Ecology 45: 13721381.Google Scholar
Hirzel, A. H., Hausser, J., Chessel, D., and Perrin, N. 2002. Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83: 20272036.Google Scholar
Hochachka, W. M., Fink, D., Hutchinson, R. A., et al. 2012. Data-intensive science applied to broad-scale citizen science. Trends in Ecology & Evolution 27: 130137.CrossRefGoogle ScholarPubMed
Holzmann, I., Agostini, I., DeMatteo, K., et al. 2015. Using species distribution modeling to assess factors that determine the distribution of two parapatric howlers (Alouatta spp.) in South America. International Journal of Primatology 36: 1832.Google Scholar
Junker, J., Blake, S., Boesch, C., et al. 2012. Recent decline in suitable environmental conditions for African great apes. Diversity and Distributions 18: 10771091.Google Scholar
Kadmon, R., Farber, O., and Danin, A. 2003. A systematic analysis of factors affecting the performance of climatic envelope models. Ecological Applications 13: 853867.Google Scholar
Kearney, M. and Porter, W. 2009. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology Letters 12: 334350.Google Scholar
Keitt, T. H., Bjornstad, O. N., Dixon, P. M., and Citron-Pousty, S. 2002. Accounting for spatial pattern when modeling organism–environment interactions. Ecography 25: 616625.Google Scholar
Kéry, M., Gardner, B., and Monnerat, C. 2010. Predicting species distributions from checklist data using site-occupancy models. Journal of Biogeography 37: 18511862.Google Scholar
Kramer-Schadt, S., Niedballa, J., Pilgrim, J. D., et al. 2013. The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions 19: 13661379.CrossRefGoogle Scholar
Kumara, H. N., Irfan-Ullah, M., and Kumar, S. 2009. Mapping potential distribution of slender loris subspecies in peninsular India. Endangered Species Research 7: 2938.CrossRefGoogle Scholar
Leathwick, J. R., Elith, J., and Hastie, T. 2006a. Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecological Modelling 199: 188196.Google Scholar
Leathwick, J. R., Elith, J., Francis, M. P., Hastie, T., and Taylor, P. 2006b. Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Marine Ecology Progress Series 321: 267281.Google Scholar
Lehmann, J., Korstjens, A. H., and Dunbar, R. I. M. 2010. Apes in a changing world: the effects of global warming on the behaviour and distribution of African apes. Journal of Biogeography 37: 22172231.Google Scholar
Levi, T., Silvius, K. M., Oliveira, L. F. B., Cummings, A. R., and Fragoso, J. M. V. 2013. Competition and facilitation in the capuchin–squirrel monkey relationship. Biotropica 45: 636643.Google Scholar
Li, J. and Hilbert, D. W. 2008. LIVES: a new habitat modelling technique for predicting the distribution of species’ occurrences using presence-only data based on limiting factor theory. Biodiversity and Conservation 17: 30793095.Google Scholar
Liu, C., Berry, P. M., Dawson, T. P., and Pearson, R. G. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: 385393.Google Scholar
Loiselle, B. A., Howell, C. A., Graham, C. H., et al. 2003. Avoiding pitfalls of using species distribution models in conservation planning. Conservation Biology 17: 15911600.CrossRefGoogle Scholar
Losos, J. B. 2008. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters 11: 9951003.Google Scholar
Lozier, J. D., Aniello, P., and Hickerson, M. J. 2009. Predicting the distribution of Sasquatch in western North America: anything goes with ecological niche modelling. Journal of Biogeography 36: 16231627.Google Scholar
Luo, Z., Zhou, S., Yu, W., et al. 2014. Impacts of climate change on the distribution of Sichuan snub-nosed monkeys (Rhinopithecus roxellana) in Shennongjia area, China. American Journal of Primatology 77: 135151.CrossRefGoogle ScholarPubMed
Lynch Alfaro, J. W., Boubli, J. P., Paim, F. P., et al. 2015. Biogeography of squirrel monkeys (genus Saimiri): south-central Amazon origin and pan-Amazonian diversification of a lowland primate. Molecular Phylogenetics and Evolution 82B: 436454.Google Scholar
MacColl, A. D. C. 2011. The ecological causes of evolution. Trends in Ecology & Evolution 26: 514522.Google Scholar
Manel, S., Dias, J.-M., and Ormerod, S. J. 1999. Comparing discriminant analysis, neural networks and logistic regression for predicting species distributions: a case study with a Himalayan river bird. Ecological Modelling 120: 337347.CrossRefGoogle Scholar
McPherson, J. M., Jetz, W., and Rogers, D. J. 2004. The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? Journal of Applied Ecology 41: 811823.Google Scholar
Meyer, A. L. S., Pie, M. R., and Passos, F. C. 2014. Assessing the exposure of lion tamarins (Leontopithecus spp.) to future climate change. American Journal of Primatology 76: 551562.Google Scholar
Mitchell, M. W., Locatelli, S., Sesink Clee, P. R., Thomassen, H. A., and Gonder, M. 2015. Environmental variation and rivers govern the structure of chimpanzee genetic diversity in a biodiversity hotspot. BMC Evolutionary Biology 15: 1.Google Scholar
Moisen, G. G. and Frescino, T. S. 2002. Comparing five modelling techniques for predicting forest characteristics. Ecological Modelling 157: 209225.Google Scholar
Morales-Jimenez, A. L., Nekaris, A., Lee, J., and Thompson, S. 2005. Modeling distributions for Colombian spider monkeys (Ateles spp.) to find priorities for conservation. American Journal of Primatology 66 (Suppl. 1): 131.Google Scholar
Muscarella, R., Galante, P. J., Soley-Guardia, M., et al. 2014. ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution 5: 11981205.Google Scholar
Newbold, T. 2010. Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Progress in Physical Geography 34: 322.Google Scholar
Nix, H. A. 1986. A biogeographic analysis of Australian elapid snakes. Pages 415 in Atlas of Elapid Snakes of Australia. Longmore, R. (Ed.). Australian Government Publishing Service, Canberra.Google Scholar
Nores, M. 1999. An alternative hypothesis for the origin of Amazonian bird diversity. Journal of Biogeography 26: 475485.Google Scholar
Oliveira, G. de, Rangel, T. F., Lima-Ribeiro, M. S., Terribile, L. C., and Diniz-Filho, J. A. F. 2014. Evaluating, partitioning, and mapping the spatial autocorrelation component in ecological niche modeling: a new approach based on environmentally equidistant records. Ecography 37: 637647.Google Scholar
Pawlak, Z. 1991. Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht.Google Scholar
Pearson, R. G. and Dawson, T. P. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12: 361371.Google Scholar
Pearson, R. G., Dawson, T. P., Berry, P. M., and Harrison, P. A. 2002. SPECIES: a spatial evaluation of climate impact on the envelope of species. Ecological Modelling 154: 289300.Google Scholar
Pearson, R. G., Thuiller, W., Araújo, M. B., et al. 2006. Model-based uncertainty in species range prediction. Journal of Biogeography 33: 17041711.Google Scholar
Pearson, R. G., Raxworthy, C. J., Nakamura, M., and Peterson, A. T. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34: 102117.Google Scholar
Peck, M., Thorn, J., Mariscal, A., et al. 2011. Focusing conservation efforts for the critically endangered brown-headed spider monkey (Ateles fusciceps) using remote sensing, modeling, and playback survey methods. International Journal of Primatology 32: 134148.Google Scholar
Peterson, A. T. 2003. Predicting the geography of species’ invasions via ecological niche modeling. Quarterly Review of Biology 78: 419433.Google Scholar
Peterson, A. T. and Nakazawa, Y. 2008. Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri. Global Ecology and Biogeography 17: 135144.Google Scholar
Peterson, A. T., Papes, M., and Eaton, M. 2007. Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30: 550560.Google Scholar
Peterson, A. T., Soberón, J., Pearson, R. G., et al. 2011. Ecological Niches and Geographic Distributions. Princeton University Press, Princeton, NJ.Google Scholar
Phillips, S. J. 2009. A brief tutorial on MaxEnt. Available at: https://biodiversityinformatics.amnh.org/open_source/maxent/Maxent_tutorial2017.pdf.Google Scholar
Phillips, S. J. and Dudík, M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161175.Google Scholar
Phillips, S. J., Anderson, R. P., and Schapire, R. E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231259.Google Scholar
Pintea, L., Jantz, S., Nackoney, J. R., and Hansen, M. C. 2014. The first high resolution maps of chimpanzee habitat health in Africa. In IUCN World Parks Congress, November 12–19, 2014. Sydney, Australia.Google Scholar
Potts, J. M. and Elith, J. 2006. Comparing species abundance models. Ecological Modelling 199: 153163.Google Scholar
R Core Team. 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
Radosavljevic, A. and Anderson, R. P. 2014. Making better Maxent models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography 41: 629643.CrossRefGoogle Scholar
Raxworthy, C. J., Ingram, C. M., Rabibisoa, N., and Pearson, R. G. 2007. Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day geckos (Phelsuma) from Madagascar. Systematic Biology 56: 907923.Google Scholar
Renner, I. W. and Warton, D. I. 2013. Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics 69: 274281.Google Scholar
Renner, I. W., Elith, J., Baddeley, A., et al. 2015. Point process models for presence-only analysis. Methods in Ecology and Evolution 6: 366379.Google Scholar
Rode, E. J., Stengel, C. J., and Nekaris, K. A.-I. 2013. Habitat assessment and species niche modeling. Pages 79102 in Primate Ecology and Conservation: A Handbook of Techniques. Sterling, E. J., Bynum, N., and Blair, M. E. (Eds.). Oxford University Press, Oxford.Google Scholar
Rodríguez-Vargas, A. R. 2003. Analysis of the hypothetical population structure of the squirrel monkey (Saimiri oerstedii) in Panamá. Pages 5362 in Primates in Fragments: Ecology and Conservation. Marsh, L.K. (Ed.). Kluwer, New York.Google Scholar
Rotenberry, J. T., Preston, K. L., and Knick, S. T. 2006. GIS-based niche modeling for mapping species’ habitat. Ecology 87: 14581464.Google Scholar
Rouget, M., Richardson, D. M., Lavorel, S., et al. 2001. Determinants of distribution of six Pinus species in Catalonia, Spain. Journal of Vegetation Science 12: 491502.Google Scholar
Rylands, A. B. and Mittermeier, R. A. 2009. The diversity of the New World primates (Platyrrhini): an annotated taxonomy. Pages 2354 in South American Primates. Garber, P. A., Estrada, A., Bicca-Marques, J. C., Heymann, E. W., and Strier, K. B. (Eds.). Springer, New York.Google Scholar
Scachetti-Pereira, R. 2002. DesktopGarp v1.1.6. Available at www.nhm.ku.edu/desktopgarp.Google Scholar
Scott, J. M., Csuti, B., Jacobi, J. D., and Estes, J. E. 1987. Species richness: a geographic approach to protecting future biological diversity. BioScience 37: 782788.Google Scholar
Segurado, P. and Araújo, M. B. 2004. An evaluation of methods for modelling species distributions. Journal of Biogeography 31: 15551568.Google Scholar
Sesink Clee, P. R., Abwe, E. E., Ambahe, R. D., et al. 2015. Chimpanzee population structure in Cameroon and Nigeria is associated with habitat variation that may be lost under climate change. BMC Evolutionary Biology 15: 2.Google Scholar
Soberón, J. and Peterson, A. T. 2005. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics 2: 110.Google Scholar
Solano Rojas, D. 2007. Evaluación del hábitat, el paisaje y la población del mono tití (Cebidae, Platyrrhini: Saimiri oerstedii oerstedii) en la Península de Osa, Costa Rica. Master’s Thesis. Universidad Nacional de Costa Rica.Google Scholar
Sterling, E. J., Bynum, N., and Blair, M. E. 2013. Conclusion: the future of studying primates in a changing world. Pages 346350 in Primate Ecology and Conservation: A Handbook of Techniques. Sterling, E. J., Bynum, N., and Blair, M. E.. (Eds.). Oxford University Press, Oxford.Google Scholar
Stockwell, D. and Peters, D. 1999. The GARP modeling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Science 13: 143158.Google Scholar
Stockwell, D. R. B. and Peterson, A. T. 2002. Effects of sample size on accuracy of species distribution models. Ecological Modelling 148: 113.Google Scholar
Struebig, M. J., Fischer, M., Gaveau, D. L. A., et al. 2015. Anticipated climate and land‐cover changes reveal refuge areas for Borneo’s orang‐utans. Global Change Biology 21: 28912904.Google Scholar
Thorn, J. S., Nijman, V., Smith, D., and Nekaris, K. A.-I. 2009. Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Diversity and Distributions 15: 289298.Google Scholar
Thuiller, W. 2003. BIOMOD: optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology 9: 13531362.Google Scholar
Thuiller, W., Lafourcade, B., Engler, R., and Araújo, M. B. 2009. BIOMOD: a platform for ensemble forecasting of species distributions. Ecography 32: 369373.Google Scholar
Tsoar, A., Allouche, O., Steinitz, O., Rotem, D., and Kadmon, R. 2007. A comparative evaluation of presence-only methods for modelling species distribution. Diversity and Distributions 13: 397405.Google Scholar
Václavík, T., Kupfer, J. A., and Meentemeyer, R. K. 2011. Accounting for multi-scale spatial autocorrelation improves performance of invasive species distribution modelling (iSDM). Journal of Biogeography 39: 4255.Google Scholar
VanDerWal, J., Shoo, L. P., Graham, C., and Williams, S. E. 2009. Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecological Modelling 220: 589594.Google Scholar
Vidal-García, F. and Serio-Silva, J. C. 2011. Potential distribution of Mexican primates: modeling the ecological niche with the maximum entropy algorithm. Primates 52: 261270.Google Scholar
Voskamp, A., Rode, E. J., Coudrat, C. N. Z., et al. 2014. Modelling the habitat use and distribution of the threatened Javan slow loris Nycticebus javanicus. Endangered Species Research 23: 277286.Google Scholar
Vu, M. V., Thach, H. M., and Pham, V. T. 2010. Using environmental niche model to study the distribution of Tonkin snub-nosed monkey (Rhinopithecus avunculus) in Northeastern Vietnam under some climate change scenarios. Pages 156–164 in Proceedings of the 24th International Conference on Informatics for Environmental Protection, Cologne/Bonn, Germany.Google Scholar
Vu, M. V., Thach, H. M., Le, M. T. T., and Pham, V. T. 2011. Study on the using of environmental niche model Bioclim to estimate the distribution of Francois’s Langur (Trachypithecus francoisi) in Northern of Vietnam under climate change of IPCC scenario A2. VNU Journal of Science: Natural Sciences & Technology 27: 7076.Google Scholar
Walker, P. A. and Cocks, K. D. 1991. HABITAT: a procedure for modelling a disjoint environmental envelope for a plant or animal species. Global Ecology and Biogeography Letters 1: 108118.Google Scholar
Warren, D. L., Glor, R. E., and Turelli, M. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62: 28682883.Google Scholar
Warren, D. L., Glor, R. E. and Turelli, M. 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33: 607611.Google Scholar
Wiens, J. J. 2004. Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58: 193197.Google Scholar
Willems, E. P. and Hill, R. A. 2009. A critical assessment of two species distribution models: a case study of the vervet monkey (Cercopithecus aethiops). Journal of Biogeography 36: 23002312.Google Scholar
Wisz, M. S., Hijmans, R. J., Li, J., et al. 2008. Effects of sample size on the performance of species distribution models. Diversity and Distributions 14: 763773.CrossRefGoogle Scholar
Wong, M. H. G., Li, R., Xu, M., and Long, Y. 2013. An integrative approach to assessing the potential impacts of climate change on the Yunnan snub-nosed monkey. Biological Conservation 158: 401409.Google Scholar
Yackulic, C. B., Chandler, R., Zipkin, E. F., et al. 2013. Presence-only modelling using MAXENT: when can we trust the inferences? Methods in Ecology and Evolution 4: 236243.Google Scholar
Yesson, C., Brewer, P. W., Sutton, T., et al. 2007. How global is the Global Biodiversity Information Facility? PLoS ONE 2: e1124.Google Scholar

References

Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. Pages 267281 in Second International Symposium on Information Theory. Petrov, B. N. and Csaki, F. (Eds.). Akademiai Kiado, Budapest.Google Scholar
Anderson, D. R., Burnham, K. P., and Thompson, W. L. 2000. Null hypothesis testing: problems, prevalence, and an alternative. Journal of Wildlife Management 64: 912923.Google Scholar
Buckland, S. T., Anderson, D. R., Burnham, K. P., et al. 2001. Introduction to Distance Sampling: Estimating Abundance of Biological Populations. Oxford University Press, New York.Google Scholar
Davies, D. K., Ilavajhala, S., Wong, M. M., and Justice, C. O. 2009. Fire information for resource management system: archiving and distributing MODIS active fire data. IEEE Transactions on Geoscience and Remote Sensing 47: 7279.Google Scholar
Dupain, J. and Van Elsacker, L. 2001. The status of the bonobo in the Democratic Republic of Congo. Pages 5774 in All Apes Great and Small Volume 1: African Apes. Galdikas, B. M. F., Erickson Briggs, N., Sheeran, L. K., Shapiro, G. L. and Goodall, J. (Eds.). Kluwer Academic/Plenum Publishers, New York.Google Scholar
Dupain, J., Nackoney, J., Kibambe, J., Bokelo, D., and Williams, D. 2009. Maringa–Lopori–Wamba Landscape. Pages 329338 in The Forests of the Congo Basin: State of the Forest 2008. de Wasseige, C., Devers, D., de Marcken, P., et al. (Eds.). Publications Office of the European Union, Luxembourg.Google Scholar
Eriksson, J. 1999. A survey of the forest and census of the bonobo (Pan paniscus) population between the Lomako and the Yekokora rivers in the Equateru province, D R Congo. MSc Thesis. University of Uppsala.Google Scholar
Fa, J. E. and Brown, D. 2009. Impacts of hunting on mammals of African tropical moist forests: a review and synthesis. Mammal Review 39: 231264.Google Scholar
Fruth, B., Benishay, J. M., Bila-Isia, I., et al. 2008. Pan paniscus. In IUCN Red List of Threatened Species, Version 2010.4. Available at: www.iucnredlist.org.Google Scholar
Hansen, M. C., Roy, D., Lindquist, E., et al. 2008. A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin. Remote Sensing of Environment 112: 24952513.Google Scholar
Hart, J., Grossmann, F., Vosper, A., and Ilanga, J. 2008. Human hunting and its impact on bonobos in the Salonga National Park, D.R. Congo. Pages 245271 in The Bonobos Behavior, Ecology, and Conservation. Furuichi, T. and Thompson, J. (Eds.). Springer, New York.Google Scholar
Hashimoto, C. and Furuichi, T. 2001. Current situation of bonobos in the Luo reserve, Equateur, Democratic Republic of Congo. Pages 8393 in All Apes Great and Small Volume 1: African Apes. Galdikas, B., Briggs, N., Sheeran, L., Shapiro, G., and Goodall, J. (Eds.). Kluwer Academic/Plenum Press, New York.Google Scholar
Hickey, J. R. 2012. Modeling bonobo (Pan paniscus) occurrence in relation to bushmeat hunting, slash-and-burn agriculture, and timber harvest: harmonizing bonobo conservation with sustainable development. Dissertation. University of Georgia.Google Scholar
Hickey, J. R. and Sidle, J. G. 2006. USDA Forest Service Office of International Programs Trip Report: Mission to Support Landscape Planning in the Maringa-Lopori-Wamba Landscape, Democratic Republic of Congo. Available at http://carpe.umd.edu/Documents/2006/MLWTripReportFinal.pdf.Google Scholar
Hickey, J., Carroll, J. P., and Nibbelink, N. P. 2012. Applying landscape metrics to characterize potential habitat of bonobos (Pan paniscus) in the Maringa–Lopori–Wamba landscape, Democratic Republic of Congo. International Journal of Primatology 33: 381400.Google Scholar
Hickey, J. R., Nackoney, J., Nibbelink, N. P., et al. 2013. Human proximity and habitat fragmentation are key drivers of the rangewide bonobo distribution. Biodiversity & Conservation 23: 30853104.Google Scholar
Hosmer, D. W. and Lemeshow, S. 1989. Applied Logistic Regression. Wiley, New York.Google Scholar
Huggins, R. M. 1989. On the statistical analysis of capture experiments. Biometrika Trust 76: 133140.Google Scholar
Hurvich, C. M. and Tsai, C. 1989. Regression and time series model selection in small samples. Biometrika 76: 297307.Google Scholar
Laurance, W. F., Goosem, M., and Laurance, G. W. 2009. Impacts of roads and linear clearings on tropical forests. Trends in Ecology and Evolution 24 : 659669.Google Scholar
MacKenzie, D. I., Nichols, J. D., Royle, J. A., et al. 2006. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence. Elsevier, Burlington, MA.Google Scholar
Millington, J. D. A., Walters, M. B., Matonis, M. S., and Liu, J. 2010. Effects of local and regional landscape characteristics on wildlife distribution across managed forests. Forest Ecology and Management 259: 11021110.Google Scholar
Mohneke, M. and Fruth, B. 2008. Bonobo (Pan paniscus) density estimation in the SW-Salonga National Park, Democratic Republic of Congo: common methodology revisited. Pages 151166 in The Bonobos Behavior, Ecology, and Conservation. Furuichi, T. and Thompson, J.. (Eds.). Springer, New York.Google Scholar
Mulavwa, M. N., Yangozene, K., Yamba-Yamba, M., et al. 2010. Nest groups of wild bonobos at Wamba: selection of vegetation and tree species and relationships between nest group size and party size. American Journal of Primatology 72 : 575586.Google Scholar
Redford, K. H. 1992. The empty forest. BioScience 42: 412422.Google Scholar
Reinartz, G. E., Isia, I. B., Ngamankosi, M., and Wema, L. W. 2006. Effects of forest type and human presence on bonobo (Pan paniscus) density in the Salonga National Park. International Journal of Primatology 27: 603634.Google Scholar
Royall, R. M. 1997. Statistical Evidence: A Likelihood Paradigm. Chapman & Hall, New York.Google Scholar
USGS. 2000. HYDRO1k Elevation Derivative Database. Available at http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30/hydro/africa.Google Scholar
Wilkie, D. S., Sidle, J. G., and Boundzanga, G. C. 1992. Mechanized logging, market hunting and a bank loan in Congo. Conservation Biology 6: 570580.Google Scholar
Wilkie, D. S., Bennett, E. L., Peres, C. A., and Cunningham, A. A. 2011. The empty forest revisited. Annual New York Academy of Sciences 1223: 120128.Google Scholar
Williams, B. K., Nichols, J. D., and Conroy, M. J. 2002. Analysis and Management of Animal Populations. Academic Press, San Diego, CA.Google Scholar

References

Agarwal, D. K., Silander, J. A., Gelfand, A. E., Dewar, R. E., and Mickelson, J. G. 2005. Tropical deforestation in Madagascar: next term analysis using hierarchical, spatially explicit, Bayesian regression models. Ecological Modelling 185(1): 105131.Google Scholar
Allnutt, T., Ferrier, S., Manion, G., et al. 2008. A method for quantifying biodiversity loss and its application to a 50-year record of deforestation across Madagascar. Conservation Letters 1(4): 173181.Google Scholar
Arroyo‐Rodríguez, V., Melo, F. P., Martínez‐Ramos, M., et al. 2017. Multiple successional pathways in human‐modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biological Reviews 92(1): 326340.Google Scholar
Barros, A. C. and Uhl, C. 1995. Logging along the Amazon River and estuary: patterns, problems and potential. Forest Ecology and Management 77(1): 87105.Google Scholar
Blanco, M. B. and Rahalinarivo, V. 2010. First direct evidence of hibernation in an eastern dwarf lemur species (Cheirogaleus crossleyi) from the high-altitude forest of Tsinjoarivo, central-eastern Madagascar. Naturwissenschaften 97(10): 945950.Google Scholar
Brinkmann, K., Noromiarilanto, F., Ratovonamana, R. Y., and Buerkert, A. 2014. Deforestation processes in south-western Madagascar over the past 40 years: what can we learn from settlement characteristics? Agriculture, Ecosystems & Environment 195: 231243.Google Scholar
Brook, B. W., Traill, L. W., and Bradshaw, C. J. A. 2006. Minimum viable population sizes and global extinction risk are unrelated. Ecology Letters 9(4): 375382.Google Scholar
Brown, K. A. and Gurevitch, J. 2004. Long-term impacts of logging on forest diversity in Madagascar. PNAS 101(16): 60456049.Google Scholar
Brown, J. L. and Yoder, A. D. 2015. Shifting ranges and conservation challenges for lemurs in the face of climate change. Ecology and Evolution 5(6): 11311142.Google Scholar
Ceballos, G., Ehrlich, P. R., Barnosky, A. D., et al. 2015. Accelerated modern human-induced species losses: entering the sixth mass extinction. Science Advances 1(5): e1400253.Google Scholar
Chen, I.-C., Shiu, H.-J., Benedick, S., et al. 2009. Elevation increases in moth assemblages over 42 years on a tropical mountain. Proceedings of the National Academy of Sciences 106(5): 14791483.Google Scholar
Consiglio, T., Schatz, G. E., McPherson, G., et al. 2006. Deforestation and plant diversity of Madagascar’s littoral forests. Conservation Biology 20(6): 17991803.Google Scholar
Cox, R., Bierman, P., Jungers, M. C., and Rakotondrazafy, A. M. 2009. Erosion rates and sediment sources in Madagascar inferred from 10Be analysis of lavaka, slope, and river sediment. Journal of Geology 117(4): 363376.Google Scholar
Dausmann, K. H., Glos, J., Ganzhorn, J. U., and Heldmaier, G. 2005. Hibernation in the tropics: lessons from a primate. Journal of Comparative Physiology B175(3): 147155.Google Scholar
Debinski, D. M. and Holt, R. D. 2000. A survey and overview of habitat fragmentation experiments. Conservation Biology 14(2): 342355.Google Scholar
Diamond, J. M. 1975. Assembly of species communities. Ecology and Evolution of Communities 342: 444.Google Scholar
Du Puy, D. J., and Moat, J. 1996. A refined classification of the primary vegetation of Madagascar based on the underlying geology: using GIS to map its distribution and to assess its conservation status. Pages 205218 in Proceedings of the International Symposium on the Biogeography of Madagascar. Lourenço, W. R. (Ed.). Editions de l’ORSTOM, Paris.Google Scholar
Dumetz, N. 1999. High plant diversity of lowland rainforest vestiges in eastern Madagascar. Biodiversity and Conservation 8(2): 273315.Google Scholar
Dunham, A. E., Erhart, E. M., Overdorff, D. J., and Wright, P. C. 2008. Evaluating effects of deforestation, hunting, and El Niño events on a threatened lemur. Biological Conservation 141(1): 287297.Google Scholar
Dunham, A. E., Erhart, E. M., and Wright, P. C. 2011. Global climate cycles and cyclones: consequences for rainfall patterns and lemur reproduction in southeastern Madagascar. Global Change Biology 17(1): 219227.Google Scholar
Elmqvist, T., Pyykönen, M., Tengö, M., et al. 2007. Patterns of loss and regeneration of tropical dry forest in Madagascar: the social institutional context. PLoS ONE 2(5): e402.Google Scholar
Ewers, R. M. and Didham, R. K. 2008. Pervasive impact of large-scale edge effects on a beetle community. PNAS 105(14): 54265429.Google Scholar
Fahrig, L. 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics 34(1): 487515.Google Scholar
Feeley, K. J., Silman, M. R., Bush, M. B., et al. 2011. Upslope migration of Andean trees. Journal of Biogeography 38(4): 783791.Google Scholar
Fernandez, C., Acosta, F. J., Abella, G., Lopez, F., and Diaz, M. 2002. Complex edge effect fields as additive processes in patches of ecological systems. Ecological Modeling 149: 273283.Google Scholar
Franklin, J. 2010. Moving beyond static species distribution models in support of conservation biogeography. Diversity and Distributions 16(3): 321330.Google Scholar
Ganzhorn, J. U., Fietz, J., Rakotovao, E., Schwab, D., and Zinner, D. 1999. Lemurs and the regeneration of dry deciduous forest in Madagascar. Conservation Biology 13(4): 794804.Google Scholar
Ganzhorn, J. U., Lowry, P. P., Schatz, G. E., and Sommer, S. 2001. The biodiversity of Madagascar: one of the world’s hottest hotspots on its way out. Oryx 35(4): 346348.Google Scholar
Goodman, S. M. and Benstead, J. 2005. Updated estimates of biotic diversity and endemism for Madagascar. Oryx 39(1): 7377.Google Scholar
Goodman, S. M. and Ganzhorn, J. 2003. Biogeography of lemurs in the humid forests of Madagascar: the role of elevational distribution and rivers. Journal of Biogeography 31(1): 4756.Google Scholar
Goodman, S. M. and Ganzhorn, J. 2004. Elevational ranges of lemurs in the humid forests of Madagascar. International Journal of Primatology 25(2): 331350.Google Scholar
Goodman, S. M. and Rakotondravony, D. 2006. The effects of forest fragmentation and isolation on insectivorous small mammals (Lipotyphla) on the Central High Plateau of Madagascar. Journal of Zoology 250(2): 193200.Google Scholar
Gorenflo, L. J., Corson, C., Chomitz, K. M., et al. 2011. Exploring the association between people and deforestation in Madagascar. Pages 197221 in Human Population Volume 1650. Cincotta, R. P. and Gorenflo, L. J. (Eds.). Springer, Berlin.Google Scholar
Green, G. M. and Sussman, R. W. 1990. Deforestation history of the eastern rain forests of Madagascar from satellite images. Science 248(4952): 212215.Google Scholar
Grenouillet, G. and Comte, L. 2014. Illuminating geographical patterns in species’ range shifts. Global Change Biology 20(10): 30803091.Google Scholar
Guisan, A., Tingley, R., Baumgartner, J. B., et al. 2013. Predicting species distributions for conservation decisions. Ecology Letters 16(12): 14241435.Google Scholar
Gustafson, E. J. and Gardner, R. H. 1996. The effect of landscape heterogeneity on the probability of patch colonization. Ecology 77(1): 94107.Google Scholar
Harper, G. J., Steininger, M. K., Tucker, C. J., Juhn, D., and Hawkins, F. 2007. Fifty years of deforestation and forest fragmentation in Madagascar. Environmental Conservation 34(4): 325333.Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25(15): 19651978.Google Scholar
Kinnaird, M. F., Sanderson, E. W., O’Brien, T. G., Wibisono, H. T., and Woolmer, G. 2003. Deforestation trends in a tropical landscape and implications for endangered large mammals. Conservation Biology 17(1): 245257.Google Scholar
Kupfer, J. A., Malanson, G. P., and Franklin, S. B. 2006. Not seeing the ocean for the islands: the mediating influence of matrix-based processes on forest fragmentation effects. Global Ecology and Biogeography 15(1): 820.Google Scholar
Lehman, S. M. 2013. Effects of altitude on the conservation biogeography of lemurs in south east Madagascar. Pages 120 in High Altitude Primates. Gursky, S., Krzton, A., and Grows, N. (Eds.). Springer, New York.Google Scholar
Lomolino, M. V., Riddle, B. R., and Brown, J. H. 2005. Biogeography, 3rd edition. Sinauer Associates, Sunderland, MA.Google Scholar
MacArthur, R. H. and Wilson, E. O. 1967. The Theory of Island Biogeography. Princeton University Press, Princeton, NJ.Google Scholar
Malcolm, J. R., Liu, C., Neilson, R. P., Hansen, L., and Hannah, L. 2006. Global warming and extinctions of endemic species from biodiversity hotspots. Conservation Biology 20(2): 538548.Google Scholar
Malcolm, J. R., Valenta, K., and Lehman, S. M. 2017. Edge effects in tropical dry forests of Madagascar: additivity or synergy? Landscape Ecology 32(2): 327341.Google Scholar
Mittermeier, R. A., Konstant, W. R., Hawkins, F., et al. 2006. Lemurs of Madagascar, 2nd edition. Conservation International, Washington, DC.Google Scholar
Moat, J. and Smith, P. P. 2007. Atlas of the Vegetation of Madagascar. Royal Botanic Gardens, Kew, London.Google Scholar
Pickett, S. and Cadenasso, M. 1995. Landscape ecology: spatial heterogeneity in ecological systems. Science 269(5222): 331334.Google Scholar
Porensky, L. M. and Young, T. P. 2013. Edge-effect interactions in fragmented and patchy landscapes. Conservation Biology 27(3): 509519.Google Scholar
Pounds, J. A., Fogden, M. P. L., and Campbell, J. H. 1999. Biological response to climate change on a tropical mountain. Nature 398(6728): 611615.Google Scholar
Raxworthy, C., Pearson, R., Rabibisoa, N., et al. 2008. Extinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar. Global Change Biology 14(8): 17031720.Google Scholar
Ricketts, T. 2001. The matrix matters: effective isolation in fragmented landscapes. American Society of Naturalists 135(1): 212222.Google Scholar
Riitters, K., Wickham, J., O’Neill, R., Jones, B., and Smith, E. 2000. Global-scale patterns of forest fragmentation. Conservation Ecology 4(2): 3.Google Scholar
Saunders, D. A., Hobbs, R. J., and Margules, C. R. 1991. Biological consequences of ecosystem fragmentation: a review. Conservation Biology 5(1): 1832.Google Scholar
Schwitzer, C., Mittermeier, R. A., Johnson, S. E., et al. 2014. Averting lemur extinctions amid Madagascar’s political crisis. Science 343(6173): 842843.Google Scholar
Seddon, N., Butchart, S., Tobias, J., et al. 2000. Conservation issues and priorities in the Mikea Forest of south-west Madagascar. Oryx 34(4): 287304.Google Scholar
Smith, A. P., Horning, N., and Moore, D. 1997. Regional biodiversity planning and lemur conservation with GIS in Western Madagascar. Conservation Biology 11: 498512.Google Scholar
Struebig, M. J., Fischer, M., Gaveau, D. L., et al. 2015. Anticipated climate and land-cover changes reveal refuge areas for Borneo’s orangutans. Global Change Biology 21(8): 28912904.Google Scholar
Styger, E., Rakotondramasy, H. M., Pfeffer, M. J., Fernandes, E., and Bates, D. M. 2007. Influence of slash-and-burn farming practices on fallow succession and land degradation in the rainforest region of Madagascar. Agriculture, Ecosystems & Environment 119(3): 257269.Google Scholar
Tapia-Armijos, M. F., Homeier, J., Espinosa, C. I., Leuschner, C., and de la Cruz, M. 2015. Deforestation and forest fragmentation in South Ecuador since the 1970s: losing a hotspot of biodiversity. PLoS ONE 10(9): e0133701.Google Scholar
Tattersall, I. and Species, W. 2007. Madagascar’s lemurs: cryptic diversity or taxonomic inflation? Evolutionary Anthropology 16: 1223.Google Scholar
Tscharntke, T., Tylianakis, J. M., Rand, T. A., et al. 2012. Landscape moderation of biodiversity patterns and processes: eight hypotheses. Biological Reviews 87(3): 661685.Google Scholar
Turner, I. M. 1996. Species loss in fragments of tropical rain forest: a review of the evidence. Journal of Applied Ecology 33(2): 200209.Google Scholar
Turner, M. G. 1989. Landscape ecology: the effect of pattern on process. Annual Review of Ecology and Systematics 20: 171197.Google Scholar
Urban, D. and Keitt, T. 2001. Landscape connectivity: a graph-theoretic perspective. Ecology 82(5): 12051218.Google Scholar
Veerle, V., Michiel, V., Gerard, G., et al. 2003. Linking hydrological, infinite slope stability and land-use change models through GIS for assessing the impact of deforestation on slope stability in high Andean watersheds. Geomorphology 52(3–4): 299315.Google Scholar
Vieilledent, G., Grinand, C., Rakotomalala, F. A., et al. 2018. Combining global tree cover loss data with historical national forest cover maps to look at six decades of deforestation and forest fragmentation in Madagascar. Biological Conservation 222: 189197.Google Scholar
Vogt, P., Riitters, K. H., Estreguil, C., et al. 2007. Mapping spatial patterns with morphological image processing. Landscape Ecology 22(2): 171177.Google Scholar
Waeber, P. O., Wilmé, L., Ramamonjisoa, B., et al. 2015. Dry forests in Madagascar: neglected and under pressure. International Forestry Review 17(2): 127148.Google Scholar
Watling, J. I., Nowakowski, A. J., Donnelly, M. A., and Orrock, J. L. 2011. Meta-analysis reveals the importance of matrix composition for animals in fragmented habitat. Global Ecology and Biogeography 20(2): 209217.Google Scholar
Whitehurst, A. S., Sexton, J. O., and Dollar, L. 2009. Land cover change in western Madagascar’s dry deciduous forests: a comparison of forest changes in and around Kirindy Mite National Park. Oryx 43(2): 275283.Google Scholar
Whitmore, T. C. and Sayer, J. A. 1992. Tropical Deforestation and Species Extinction. Chapman & Hall, New York.Google Scholar
Whittaker, R. J., Araujo, M. B., Paul, J., et al. 2005. Conservation biogeography: assessment and prospect. Diversity and Distributions 11(1): 323.Google Scholar
Woodroffe, R. and Ginsberg, J. R. 1998. Edge effects and the extinction of populations inside protected areas. Science 280(5372): 21262128.Google Scholar
Zinner, D., Wygoda, C., Razafimanantsoa, L., et al. 2014. Analysis of deforestation patterns in the central Menabe, Madagascar, between 1973 and 2010. Regional Environmental Change 14: 110.Google Scholar

References

Almeida-Neto, M., Guimaraes, P. R., and Lewinsohn, T. M. 2007. On nestedness analyses: rethinking matrix temperature and anti-nestedness. Oikos 116: 716722.Google Scholar
Almeida-Neto, M., Guimarães, P., Guimarães, P. R. Jr., Loyola, R. D., and Ulrich, W. 2008. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117: 12271239.Google Scholar
Anemone, R. L., Conroy, G. C., and Emerson, C. W. 2011. GIS and paleoanthropology: incorporating new approaches from the geospatial sciences in the analysis of primate and human evolution. Yearbook of Physical Anthropology 54: 1946.Google Scholar
Atmar, W. and Patterson, B. D. 1993. The measure of order and disorder in the distribution of fragmented habitat. Oecologia 96: 373382.Google Scholar
Baselga, A., Jimenez-Valverde, A., and Niccolini, G. 2007. A multiple-site similarity measure independent of richness. Biology Letters 3 (6): 642645.Google Scholar
Batjes, N. H. 2009. Harmonized soil profile data for applications at global and continental scales: updates to the WISE database. Soil Use and Management 25: 124127.Google Scholar
Beaudrot, L. H. and Marshall, A. J. 2011. Primate communities are structured more by dispersal limitation than by niches. Journal of Animal Ecology 80: 332341.Google Scholar
Beaudrot, L., Struebig, M. J., Meijaard, E., et al. 2013. Co-occurrence patterns of Bornean vertebrates suggest competitive exclusion is strongest in distantly related taxa. Oecologia 173: 10531062.Google Scholar
Beaudrot, L., Kamilar, J. M., Marshall, A. J., and Reed, K. E. 2014. African primate assemblages exhibit a latitudinal gradient in dispersal limitation. International Journal of Primatology 35: 10881104.Google Scholar
Bivand, R. 2013. spdep. R package.Google Scholar
Blair, M. E., Sterling, E. J., Dusch, M., Raxworthy, C. J., and Pearson, R. G. 2013. Ecological divergence and speciation between lemur (Eulemur) sister species in Madagascar. Journal of Evolutionary Biology 26: 17901801.Google Scholar
Boubli, J. P. and de Lima, M. G. 2009. Modeling the geographical distribution and fundamental niches of Cacajao spp. and Chiropotes israelita in northwestern Amazonia via a maximum entropy algorithm. International Journal of Primatology 30: 217228.Google Scholar
Cardillo, M. and Meijaard, E. 2010. Phylogeny and co-occurrence of mammal species on Southeast Asian islands. Global Ecology and Biogeography 19(4): 465474.Google Scholar
Carroll, M. L., Townshend, J. R., DiMiceli, C. M., Noojipady, P., and Sohlberg, R. A. 2009. A new global raster water mask at 250 m resolution. International Journal of Digital Earth 2: 291308.Google Scholar
Carstensen, D. W., Lessard, J. P., Holt, B. G., Borregaard, M. K., and Rahbek, C. 2013. Introducing the biogeographic species pool. Ecography 36: 19.Google Scholar
Carvalho, J. C., Cardoso, P., and Gomes, P. 2012. Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Global Ecology and Biogeography 21 (7): 760771.Google Scholar
Dapporto, L., Ramazzotti, M., Fattorini, S., et al. 2013. recluster: an unbiased clustering procedure for beta-diversity turnover. Ecography. DOI: 10.1111/j.1600-0587.2013.00444.x.Google Scholar
Diamond, J. M. 1975. Assembly of species communities. Pages 342444 in Ecology and Evolution of Communities, Cody, M. L. and Diamond, J. M. (Eds.). Cambridge, MA: Harvard University Press.Google Scholar
Dormann, C. F., McPherson, J. M., Araujo, M. B., et al. 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30: 609628.Google Scholar
Elith, J. and Graham, C. H. (2009) Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32: 6677.Google Scholar
Elith, J., Graham, C. H., Anderson, R. P., et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129151.Google Scholar
Fayle, T. M. and Manica, A. 2010. Reducing over-reporting of deterministic co-occurrence patterns in biotic communities. Ecological Modelling 221: 22372242.Google Scholar
Fielding, A. H. 2007. Cluster and Classification Techniques for the Biosciences. Cambridge University Press, New York.Google Scholar
Fleagle, J. G. and Reed, K. E. 1996. Comparing primate communities: a multivariate approach. Journal of Human Evolution 30: 489510.Google Scholar
Fortin, M.-J. and Dale, M. R. T. 2005. Spatial Analysis: A Guide for Ecologists. Cambridge University Press, Cambridge.Google Scholar
Fox, B. J. 1987. Species assembly and the evolution of community structure. Evolutionary Ecology 1: 201213.Google Scholar
Freckleton, R. P. and Jetz, W. 2009. Space versus phylogeny: disentangling phylogenetic and spatial signals in comparative data. Proceedings of the Royal Society B 276: 2130.Google Scholar
Ganzhorn, J. U. 1998. Nested patterns of species composition and their implications for lemur biogeography in Madagascar. Folia Primatologica 69 (Suppl. 1): 332341.Google Scholar
Goslee, S. and Urban, D. 2013. ecodist: Dissimilarity-based functions for ecological analysis. R package.Google Scholar
Gotelli, N. J. and McCabe, D. J. 2002. Species co-occurrence: a meta-analysis of J. M. Diamond’s assembly rules model. Ecology Letters 83: 20912096.Google Scholar
Gotelli, N. J., Hart, E. M., and Ellison, A. M. 2015. EcoSimR: null model analysis for ecological data. R package.Google Scholar
Gower, J. C. and Hand, D. J. 1995. Biplots. Chapman and Hall/CRC, London.Google Scholar
Graham, C. H., Ferrier, S., Huettman, F., Moritz, C., and Peterson, A. T. 2004. New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology and Evolution 19 (9): 497503.Google Scholar
Guillot, G. and Rousset, F. 2013. Dismantling the Mantel tests. Methods in Ecology and Evolution. DOI: 10.1111/2041-210x.12018.Google Scholar
Guimarães, P. R. and Guimarães, P. 2006. Improving the analyses of nestedness for large sets of matrices. Environmental Modelling and Software 21: 15121513.Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 19651978.Google Scholar
Hutchinson, G. E. 1959. Homage to Santa Rosalia, or why are there so many kinds of animals? American Naturalist 93: 145159.Google Scholar
Junker, J., Blake, S., Boesch, C., et al. 2012. Recent decline in suitable environmental conditions for African great apes. Diversity and Distributions 18: 10771091.Google Scholar
Kamilar, J. M. 2009. Environmental and geographic correlates of the taxonomic structure of primate communities. American Journal of Physical Anthropology 139: 382393.Google Scholar
Kamilar, J. M. and Atkinson, Q. D. 2013. Cultural assemblages show nested structure in humans and chimpanzees but not orangutans. PNAS 111: 111115.Google Scholar
Kamilar, J. M. and Beaudrot, L. 2013. Understanding primate communities: recent developments and future directions. Evolution and Anthropology 22: 174185.Google Scholar
Kamilar, J. M. and Bradley, B. J. 2011. Interspecific variation in primate coat color supports Gloger’s rule. Journal of Biogeography 38: 22702277.Google Scholar
Kamilar, J. M. and Ledogar, J. A. 2011. Species co-occurrence patterns and dietary resource competition in primates. American Journal of Physical Anthropology 144: 131139.Google Scholar
Kamilar, J. M. and Marshack, J. L. 2012. Does geography or ecology best explain “cultural” variation among chimpanzee communities? Journal of Human Evolution 62: 256260.Google Scholar
Kamilar, J. M. and Muldoon, K. M. 2010. The climatic niche diversity of Malagasy primates: a phylogenetic approach. PLoS ONE 5: e11073.Google Scholar
Kamilar, J. M., Muldoon, K. M., Lehman, S. M., and Herrera, J. P. 2012. Testing Bergmann’s rule and the resource seasonality hypothesis in Malagasy primates using GIS-based climate data. American Journal of Physical Anthropology 147: 401408.Google Scholar
Kamilar, J. M., Beaudrot, L., and Reed, K. E. 2014. The influences of species richness and climate on the phylogenetic structure of African haplorhine and strepsirrhine primate communities. International Journal of Primatology 35: 11051121.Google Scholar
Kamilar, J. M., Beaudrot, L., and Reed, K. E. 2015. Climate and species richness predict the phylogenetic structure of African mammal communities. PLoS ONE 10: e0121808.Google Scholar
Kamilar, J. M., Blanco, M., and Muldoon, K. M. 2016. Ecological niche modeling of mouse lemurs (Microcebus spp.) and its implications for their species diversity and biogeography. Pages 449461 in Dwarf and Mouse Lemurs of Madagascar: Biology, Behavior and Conservation Biogeography of the Cheirogaleidae. Lehman, S. M., Radespiel, U., and Zimmermann, E. (Eds.). Cambridge University Press, Cambridge.Google Scholar
Kissling, W. D., Dormann, C. F., and Groeneveld, J., et al. 2012. Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. Journal of Biogeography 39: 21632178.Google Scholar
Koleff, P., Gaston, K. J., and Lennon, J. J. 2003. Measuring beta diversity for presence–absence data. Journal of Animal Ecology 72(3): 367382.Google Scholar
Krebs, C. J. 1999. Ecological Methodology, 2nd edition. Benjamin Cummings, Menlo Park, CA.Google Scholar
Kreft, H. and Jetz, W. 2010. A framework for delineating biogeographical regions based on species distributions. Journal of Biogeography 37 (11): 20292053.Google Scholar
Legendre, P. 2000. Comparison of permutation methods for the partial correlation and partial Mantel tests. Journal of Statistical Computation and Simulation 67: 3773.Google Scholar
Legendre, P. and Legendre, L. 1998. Numerical EcologyElsevier Science BV, Amsterdam.Google Scholar
Legendre, P., Borcard, D., Peres-Neto, P. R. 2005. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs 75 (4): 435450.Google Scholar
Lehman, S. M. 2006. Nested distribution patterns and the historical biogeography of the primates of Guyana. Pages 6380 in Primate Biogeography. Lehman, S. M. and Fleagle, J. G. (Eds.). Springer, New York.Google Scholar
Magurran, A. E. 1988. Ecological Diversity and Its Measurements. Princeton University Press, Princeton.Google Scholar
Manly, B. F. 2005. Multivariate Statistical Methods: a Primer. CRC Press, Boca Raton, FL.Google Scholar
Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Research 27: 209220.Google Scholar
McGarigal, K., Cushman, S., and Stafford, S. 2000. Multivariate Statistics for Wildlife and Ecology Research. Springer, New York.Google Scholar
Merow, C., Smith, M. J., and Silander, J. A. 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography. DOI: 10.1111/j.1600-0587.2013.07872.x.Google Scholar
Oksanen, J., Blanchet, F. G., Kindt, R., et al. 2013. vegan: community ecology package. R package.Google Scholar
Ossi, K. M. and Kamilar, J. M. 2006. Environmental and phylogenetic correlates of Eulemur behavior and ecology (Primates: Lemuridae). Behavioral Ecology and Sociobiology 61: 5364.Google Scholar
Patterson, B. D. 1987. The principle of nested subsets and its implications for biological conservation. Conservation and Biology 1(4): 323334.Google Scholar
Peres, C. A. 1997. Primate community structure at twenty western Amazonian flooded and unflooded forests. Journal of Tropical Ecology 13: 381405.Google Scholar
Phillips, S. J. and Dudık, M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161175.Google Scholar
Phillips, S. J., Anderson, R. P., and Schapire, R. E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modeling 190: 231259.Google Scholar
Primack, R. and Corlett, R. 2005. Tropical Rain Forests: An Ecological and Biogeographical Comparison. Blackwell Publishing, New York.Google Scholar
Rangel, T. F. L. V. B., Diniz-Filho, J. A. F., and Bini, L. M. 2010. SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography 33: 4650.Google Scholar
Reed, K. E. and Bidner, L. R. 2004. Primate communities: past, present, and possible future. American Journal of Physical Anthropology 47: 239.Google Scholar
Rosenberg, M. 2001. PASSAGE: Pattern Analysis, Spatial Statistics, and Geographic Exegesis Version 1.0. Arizona State University.Google Scholar
Sanderson, J. G., Diamond, J. M., and Pimm, S. L. 2009. Pairwise co-existence of Bismark and Solomon landbird species. Evolutionary Ecology Research 11: 771786.Google Scholar
Sfenthourakis, S., Giokas, S., and Tzanatos, E. 2004. From sampling stations to archipelagos: investigating aspects of the assemblage of insular biota. Global Ecology and Biogeography 13: 2335.Google Scholar
Sfenthourakis, S., Tzanatos, E., and Giokas, S. 2005. Species co-occurrence: the case of congeneric species and a causal approach to patterns of species association. Global Ecology and Biogeography 15: 3949.Google Scholar
Smouse, P., Long, J., and Sokal, R. R. 1986. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Systematic Zoology 35: 627632.Google Scholar
Sokal, R. R., Oden, N. L., Walker, J., and Waddle, D. M. 1997. Using distance matrices to choose between competing theories and an application to the origin of modern humans. Journal of Human Evolution 32: 501522.Google Scholar
Stone, L. and Roberts, A., 1990. The checkerboard score and species distributions. Oecologia, 85(1): 7479.Google Scholar
Strong, D. R., Simberloff, D., Abele, L. G., and Thistle, A. B. (Eds.). 1984. Ecological Communities. Princeton University Press, Princeton.Google Scholar
Tabachnick, B. G. and Fidell, L. S. 1989. Using Multivariate Statistics, 2nd edition. Harper and Row, New York.Google Scholar
ter Braak, C. J. F. and Smilauer, P. 2002. CANOCO for Windows Version 4.5. Microcomputer Power.Google Scholar
Thorn, J. S., Nijman, V., Smith, D., and Nekaris, K. A. I. 2009. Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Diversity and Distributions 15: 289298.Google Scholar
Thorne, J. H., Seo, C., and Basabose, A., et al. 2013. Alternative biological assumptions strongly influence models of climate change effects on mountain gorillas. Ecosphere 4: 108.Google Scholar
Tuomisto, H. 2010a. A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33(1): 222.Google Scholar
Tuomisto, H. 2010b. A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography 33(1): 2345.Google Scholar
Ulrich, W. 2008. Pairs: a FORTRAN program for studying pair-wise species associations in ecological matrices. Available at: www.uni.torun.pl/~ulrichw.Google Scholar
Ulrich, W. and Gotelli, N. J. 2012. Pattern detection in null model analysis. Oikos. DOI: 10.1111/j.1600-0706.2012.20325.x.Google Scholar
Vidal-García, F. and Serio-Silva, J. C. 2011. Potential distribution of Mexican primates: modeling the ecological niche with the maximum entropy algorithm. Primates 52: 261270.Google Scholar
Whiten, A., Goodall, J., McGrew, W. C., et al. 2001. Charting cultural variation in chimpanzees. Behaviour 138: 14811516.Google Scholar
Wilson, J. B. 1989. A null model of guild proportionality, applied to stratification of a New-Zealand temperate rain-forest. Oecologia 80(2): 263267.Google Scholar
Wolfheim, J. H. 1983. Primates of the World: Distribution, Abundance, and Conservation. University of Washington Press, Seattle.Google Scholar

References

Beyer, H. L. 2004. Hawth’s analysis tools for ArcGIS. Available at www.spatialecology.com/htools.Google Scholar
Chapman, C. A. 1985. The influence of habitat on behavior in a group of St. Kitts green monkeys. Journal of Zoology, London 206: 311320.Google Scholar
Chapman, C. A. 1987. Selection of secondary growth areas by vervet monkeys (Cercopithecus aethiops). American Journal of Primatology 12: 217221.Google Scholar
Chapman, C. A. and Fedigan, L. M. 1984. Territoriality in the St. Kitts vervet, Cercopithecus aethiops. Journal of Human Evolution 13: 677686.Google Scholar
Chapman, C. A., Fedigan, L. M., and Fedigan, L. 1988. Ecological and demographic influences on the pattern of association in St. Kitts vervets. Primates 29: 417421.Google Scholar
Cormier, L. A. 2002. Monkey as food, monkey as child: Guaja symbolic cannibalism. Pages 6384 in Primates Face to Face: The Conservation Implications of Human and Nonhuman Primate Interconnections. Fuentes, A. and Wolfe, L. D.. Cambridge University Press, Cambridge.Google Scholar
Cormier, L. A. 2003. Kinship with Monkeys: The Guaja Foragers of Eastern Amazonia. Columbia University Press, New York.Google Scholar
Dore, K. M. 2013. An anthropological investigation of the dynamic human–vervet monkey (Chlorocebus aethiops sabaeus) interface in St. Kitts, West Indies. Dissertation. University of Wisconsin-Milwaukee.Google Scholar
Dore, K. M. 2017. Navigating the methodological landscape: ethnographic data expose the nuances of “the monkey problem” in St. Kitts, West Indies. Pages 219231 in Ethnoprimatology: A Practical Guide to Research at the Human–Nonhuman Primate Interface. Dore, K. M., Riley, E. P., and Fuentes, A.. Cambridge University Press, Cambridge.Google Scholar
Dore, K. M. 2018. Ethnoprimatology without conservation: the political ecology of farmer-green monkey (Chlorocebus aethiops sabaeus) relations in St. Kitts, West Indies. International Journal of Primatology 39: 918944.Google Scholar
Dore, K. M., Eller, A. R., Eller, J. L. 2018. Identity construction and symbolic association in farmer–vervet monkey (Chlorocebus aethiops sabaeus) interconnections in St. Kitts. Folia Primatologica 89: 6380.Google Scholar
Fairbanks, L. A. and Bird, J. 1978. Ecological correlates of interindividual distance in the St. Kitts vervet (Cercopithecus aethiops sabaeus). Primates 19: 605614.Google Scholar
Fuentes, A. 2006. Human–nonhuman primate interconnections and their relevance to anthropology. Ecological and Environmental Anthropology 2(2): 111.Google Scholar
Fuentes, A. 2012. Ethnoprimatology and the anthropology of the human–primate interface. Annual Review of Anthropology 41: 101117.Google Scholar
Fuentes, A. and Hockings, K. 2010. The ethnoprimatological approach in primatology. American Journal of Primatology 72: 841847.Google Scholar
Fuentes, A. and Wolfe, L. 2002. Primates Face to Face: Conservation Implications of Human–Nonhuman Primate Interconnections. Cambridge University Press, Cambridge.Google Scholar
Gillingham, S. and Lee, P. C. 2003. People and protected areas: a study of local perceptions of wildlife crop-damage conflict in an area bordering the Selous Game Reserve, Tanzania. Oryx 3: 316325.Google Scholar
Hardin, R. and Remis, M. J. 2006. Biological and cultural anthropology of a changing tropical forest: a fruitful collaboration across subfields. American Anthropologist 108: 273285.Google Scholar
Hashim, N. R., Abdul Manan, M. S., and Nazli, M. F. 2009. Using geographic information system to predict primate crop raiding in peninsular Malaysia. IUP Journal of Environmental Sciences 3(4): 3946.Google Scholar
Helmer, E. H., Kennaway, T. A., Pedreros, D. H., et al. 2008. Land cover and forest formation distributions for St. Kitts, Nevis, St. Eustatius, Grenada and Barbados from decision tree classification of cloud-cleared satellite imagery. Caribbean Journal of Science 44: 175198.Google Scholar
Hill, C. M. 1997. Crop-raiding by wild vertebrates: the farmer’s perspective in an agricultural community in western Uganda. International Journal of Pest Management 43: 7784.Google Scholar
Hill, C. M. 2000. Conflict of interest between people and baboons: crop raiding in Uganda. International Journal of Primatology 21: 299315.Google Scholar
Hill, C. M. and Webber, A. D. 2010. Perceptions of nonhuman primates in human–wildlife conflict scenarios. American Journal of Primatology 72: 919924.Google Scholar
Lee, Y. and Nelder, J. A. 1996. Hierarchical generalized linear models with discussion. Journal of the Royal Statistical Society B 58: 619678.Google Scholar
Linkie, M., Dinata, Y., Nofrianto, A., and Leader-Williams, N. 2007. Patterns and perceptions of wildlife crop raiding in and around Kerinci Seblat National Park, Sumatra. Animal Conservation 10: 127135.Google Scholar
Maples, W. R., Maples, M. K., Greenhood, W. F., and Walek, M. L. 1976. Adaptations of crop-raiding baboons in Kenya. American Journal of Physical Anthropology 45: 309316.Google Scholar
McGuire, M. T. 1974. The St. Kitts Vervet. Karger, New York.Google Scholar
Naughton-Treves, L. 1996. Uneasy neighbors: wildlife and farmers around Kibale National Park, Uganda. Dissertation. University of Florida.Google Scholar
Naughton-Treves, L. 1997. Farming the forest edge: vulnerable places and people around Kibale National Park, Uganda. Geographical Review 87: 2746.Google Scholar
Naughton-Treves, L. 1998. Predicting patterns of crop damage by wildlife around Kibale National Park, Uganda. Conservation Biology 12: 156169.Google Scholar
Naughton-Treves, L., Treves, A., Chapman, C., and Wrangham, R. 1998. Temporal patterns of crop-raiding by primates: linking food availability in croplands and adjacent forest. Journal of Applied Ecology 35: 596606.Google Scholar
Newmark, W. D., Manyanza, D. N., Gamassa, D.-G. M., and Sariko, H. I. 1994. The conflict between wildlife and local people living adjacent to protected areas in Tanzania: human density as a predictor. Conservation Biology 8: 249255.Google Scholar
Nijman, V. and Nekaris, K. A. I. 2010. Testing a model for predicting primate crop-raiding using crop- and farm-specific risk values. Animal Behaviour Science 127: 125129.Google Scholar
Paterson, J. and Wallis, J. 2005. Commensalism and Conflict: The Primate–Human Interface. American Society of Primatologists, Norman, OK.Google Scholar
Perkins, N. J. and Schisterman, E. F. 2006. The inconsistency of “optimal” cutpoints obtained using two criteria based on the receiver operating characteristic curve. American Journal of Epidemiology 163: 670675.Google Scholar
Petto, A. J. and Povinelli, D. J. 1985. Some preliminary observations of vervets (Cercopithecus aethiops) from the Greatheeds Pond Area on St. Kitts, WI. Canadian Journal of Anthropology 4(2): 7781.Google Scholar
Poirier, F. E. 1972. The St. Kitts green monkey (Cercopithecus aethiops sabaeus): ecology, population dynamics, and selected behavioral traits. Folia Primatologica 17: 2055.Google Scholar
Priston, N. E. C. 2005. Crop raiding by Macaca ochreata brunnescens in Sulawesi: reality, perceptions and outcomes for conservation. Dissertation. University of Cambridge.Google Scholar
Priston, N. E. C. and Underdown, S. J. 2009. A simple method for calculating the likelihood of crop damage by primates: an epidemiological approach. International Journal of Pest Management 55: 5156.Google Scholar
R Core Team. 2008. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
Riley, E. P. 2007. The human–macaque interface: conservation implications of current and future overlap and conflict in Lore Lindu National Park, Sulawesi, Indonesia. American Anthropologist 109: 473484.Google Scholar
Riley, E. P. and Priston, N. E. C. 2010. Macaques in farms and folklore: exploring the human–nonhuman primate interface in Sulawesi, Indonesia. American Journal of Primatology 72: 848854.Google Scholar
Rönnegård, L., Shen, X., and Alam, M. 2010. HGLM: a package for fitting hierarchical generalized linear models. R Journal 2(2): 2028.Google Scholar
Sade, D. S. and Hildrech, R. W. 1965. Notes on the green monkey (Cercopithecus aethiops sabaeus) on St. Kitts, West Indies. Caribbean Journal of Science 5: 6781.Google Scholar
Siex, K. S. and Struhsaker, T. T. 1999. Colobus monkeys and coconuts: a study of perceived human–wildlife conflicts. Journal of Applied Ecology 36: 10091020.Google Scholar
Sitati, N. W., Walpole, M. J., Smith, R. J., and Leader-Williams, N. 2003. Predicting spatial aspects of human–elephant conflict. Journal of Applied Ecology 40: 667677.Google Scholar
Strum, S. C. 1994. Prospects for managing primate pests. Revue d’Ecologie: La Terre et la Vie 49: 295306.Google Scholar
Tweyho, M., Hill, C. M., and Obua, J. 2005. Patterns of crop raiding by primates around the Budongo Forest Reserve, Uganda. Wildlife Biology 11: 327347.Google Scholar
Warren, Y., Buba, B., and Ross, C. 2007. Patterns of crop-raiding near a Nigerian National Park. International Journal of Pest Management 53: 207216.Google Scholar
Webber, A. D. 2006. Primate crop raiding in Uganda: actual and perceived risks around Budongo Forest Reserve. Dissertation. Oxford Brookes University.Google Scholar
Wheatley, B. P. 1999. The Sacred Monkeys of Bali. Waveland, Prospect Heights, NY.Google Scholar

References

Bezanson, M. and McNamara, A. 2019. The what and where of primate field research may be failing primate conservation. Evolutionary Anthropology 28: 166178.Google Scholar
Dolins, F. L., Jolly, A., Ratsimbazafy, J., et al. 2010. Conservation education in Madagascar: three case studies in the biologically diverse island-continent. American Journal of Primatology 72(5): 391406.Google Scholar
Estrada, A., Garber, P. A., Rylands, A. B., et al. 2017. Impending extinction crisis of the world’s primates: why primates matter. Science Advances 3: e1600946.Google Scholar
Estrada, A., Garber, P. A., Mittermeier, R. A., et al. 2018. Primates in peril: the significance of Brazil, Madagascar, Indonesia and the Democratic Republic of the Congo for global primate conservation. PeerJ. DOI 10.7717/peerj.4869.Google Scholar
Evans, K. 2019. Ancient farmers burned the Amazon, but today's fires are very different. National Geographic. Available at www.nationalgeographic.com/environment/2019/09/ancient-humans-burned-amazon-fires-today-entirely-different.Google Scholar
Garber, P. A. 2019. Commentary, Distinguished Primatologist Address: moving from advocacy to activism – changing views of primate field research and conservation over the past 40 years. American Journal of Primatology. DOI: 10.1002/ajp.23052Google Scholar
IUCN. 2019. The IUCN Red List of Threatened Species. Version 2018-2. Available at www.iucnredlist.org.Google Scholar
Janmaat, K. R. L. 2019. What animals do not do or fail to find: a novel observational approach for studying cognition in the wild. Evolutionary Anthropology. DOI: 10.1002/evan.21794,Google Scholar
Kalan, A. K., Piel, A. K., Mundry, R., et al. 2016. Passive acoustic monitoring reveals group ranging and territory use: a case study of wild chimpanzees (Pan troglodytes). Frontiers in Zoology 13(1): 34.Google Scholar
Muller, R. D., Muller, D., Schierhorn, F., Gerold, G., and Pacheco, P. 2012. Proximate causes of deforestation in the Bolivian lowlands: an analysis of spatial dynamics. Regional Environmental Change 12(3): 445459.Google Scholar
Pecanha, S. and Wallace, T. 2019. We’re thinking about the Amazon fires all wrong: these maps show why. Washington Post. Available at: www.washingtonpost.com/opinions/2019/09/05/were-thinking-about-amazon-fires-all-wrong-these-maps-show-why.Google Scholar
Peres, C. A. 1999. Ground fires as agents of mortality in a Central Amazonian forest. Journal of Tropical Ecology 15(4): 535541.Google Scholar
Peres, C. A. 2001. The fire next time: the potential for a catastrophic blaze threatens the Amazon. Time Magazine, 8 January: 48.Google Scholar
Rodrigues, M. A. 2019. Is science failing the world’s primates? The Revelator: Wild, Incisive, Fearless. Available at https://therevelator.org/primates-research.Google Scholar
Savage, A., Guillen, R., Lamilla, I., and Soto, L. 2010. Developing an effective community conservation program for cotton-top tamarins (Saguinus oedipus) in Colombia. American Journal of Primatology 72(5): 379390.Google Scholar

References

Estrada, A., Garber, P. A., Rylands, A. B., et al. 2017. Impending extinction crisis of the world’s primates: why primates matter. Science Advances 3: e1600946.Google Scholar
Estrada, A., Garber, P. A., Mittermeier, R. A., et al. 2018. Primates in peril: the significance of Brazil, Madagascar, Indonesia and the Democratic Republic of the Congo for global primate conservation. PeerJ DOI: 10.7717/peerj.4869.Google Scholar
Garber, P. A. and Dolins, F. L. 2014. Primate spatial strategies and cognition: introduction to the special issue. American Journal of Primatology DOI: 10.1002/ajp.22257.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×