Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-30T05:36:29.138Z Has data issue: false hasContentIssue false

8 - The neuroendocrinology of stress in the pathophysiology of bipolar disorders

Published online by Cambridge University Press:  05 May 2016

Jair C. Soares
Affiliation:
University of Texas Health Science Center, Houston
Allan H. Young
Affiliation:
King's College London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Bipolar Disorders
Basic Mechanisms and Therapeutic Implications
, pp. 90 - 101
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belanoff, J.K., Flores, B.H., Kalezhan, M., et al. Rapid reversal of psychotic depression using mifepristone. J Clin Psychopharmacol. 2001;21:516–21.CrossRefGoogle ScholarPubMed
Blasey, C.M., Debattista, C., Roe, R., et al. A multisite trial of mifepristone for the treatment of psychotic depression: a site-by-treatment interaction. Contemp Clin Trials. 2009;30:284–8.Google ScholarPubMed
Blumberg, H.P., Leung, H.C., Skudlarski, P., et al. A functional magnetic resonance imaging study of bipolar disorder: state- and trait-related dysfunction in ventral prefrontal cortices. Arch Gen Psychiatry. 2003;60:601–9.CrossRefGoogle ScholarPubMed
Bourdeau, I., Bard, C., Noel, B., et al. Loss of brain volume in endogenous Cushing’s syndrome and its reversibility after correction of hypercortisolism. J Clin Endocrinol Metab. 2002;87:1949–54.Google ScholarPubMed
Brown, G.W., Bifulco, A., Harris, T., et al. Life stress, chronic subclinical symptoms and vulnerability to clinical depression. J Affect Disord. 1986;11:119.CrossRefGoogle ScholarPubMed
Cassidy, F., Ritchie, J.C., Carroll, B.J., Plasma dexamethasone concentration and cortisol response during manic episodes. Biol Psychiatry. 1998;43:747–54.CrossRefGoogle ScholarPubMed
Cervantes, P., Gelber, S., Kin, F.N., et al. Circadian secretion of cortisol in bipolar disorder. J Psychiatry Neurosci. 2001;26: 411–16.Google ScholarPubMed
Ceulemans, S., De Zutter, S., Heyrman, L., et al. Evidence for the involvement of the glucocorticoid receptor gene in bipolar disorder in an isolated northern Swedish population. Bipolar Disord. 2011;13: 614–23.CrossRefGoogle Scholar
Chen, H.H., Nicoletti, M., Sanches, M., et al. Normal pituitary volumes in children and adolescents with bipolar disorder: a magnetic resonance imaging study. Depress Anxiety. 2004;20: 182–6.CrossRefGoogle ScholarPubMed
Claes, S., Glucocorticoid receptor polymorphisms in major depression. Ann N Y Acad Sci. 2009;1179:216–28.CrossRefGoogle ScholarPubMed
Colasanti, A., Young, A.H., Major depressive episodes in clinical practice: state of the art and new developments in drug therapy. Hot Topics Neurol Psychiatry. 2011;12:1321.Google Scholar
Colasanti, A., Esquivel, G., Schruers, K.J., et al. On the psychotropic effects of carbon dioxide. Curr Pharm Des. 2012;18:5627–37.CrossRefGoogle ScholarPubMed
Colasanti, A., Owen, D.R., Grozeva, D., et al. Bipolar disorder is associated with the rs6971 polymorphism in the gene encoding 18 kDa translocator protein (TSPO). Psychoneuroendocrinology. 2013;38:2826–9.CrossRefGoogle ScholarPubMed
Cousins, D.A., Moore, P.B., Watson, S., et al. Pituitary volume and third ventricle width in euthymic patients with bipolar disorder. Psychoneuroendocrinology. 2010;35:1074–81.CrossRefGoogle ScholarPubMed
Daban, C., Vieta, E., Mackin, P., et al. Hypothalamic–pituitary-adrenal axis and bipolar disorder. Psychiatr Clin North Am. 2005;28:469–80.CrossRefGoogle ScholarPubMed
DeBattista, C., Belanoff, J., Glass, S., et al. Mifepristone versus placebo in the treatment of psychosis in patients with psychotic major depression. Biol Psychiatry. 2006;60:1343–9.CrossRefGoogle ScholarPubMed
De Luca, V., Tharmalingam, S., Kennedy, J.L., Association study between the corticotropin-releasing hormone receptor 2 gene and suicidality in bipolar disorder. Eur Psychiatry. 2007;22:282–7.CrossRefGoogle ScholarPubMed
Denton, D.A., The Primodial Emotions: The Dawning of Consciousness. Oxford: Oxford University Press; 2005.Google Scholar
Deshauer, D., Grof, E., Alda, M., et al. Patterns of DST positivity in remitted affective disorders. Biol Psychiatry. 1999;45:1023–9.CrossRefGoogle ScholarPubMed
Deshauer, D., Duffy, A., Alda, M., et al. The cortisol awakening response in bipolar illness: a pilot study. Can J Psychiatry. 2003;48:462–6.CrossRefGoogle ScholarPubMed
Dinkel, K., MacPherson, A., Sapolsky, R.M., Novel glucocorticoid effects on acute inflammation in the CNS. J Neurochem. 2003;84:705–16.CrossRefGoogle ScholarPubMed
Ellenbogen, M.A., Hodgins, S., Walker, C.D., High levels of cortisol among adolescent offspring of parents with bipolar disorder: a pilot study. Psychoneuroendocrinology. 2004;29:99106.CrossRefGoogle ScholarPubMed
Ellenbogen, M.A., Hodgins, S., Walker, C.D., et al. Daytime cortisol and stress reactivity in the offspring of parents with bipolar disorder. Psychoneuroendocrinology. 2006;31:1164–80.CrossRefGoogle ScholarPubMed
Ellenbogen, M.A., Santo, J.B., Linnen, A.M., et al. High cortisol levels in the offspring of parents with bipolar disorder during two weeks of daily sampling. Bipolar Disord. 2010;12:7786.CrossRefGoogle ScholarPubMed
Etain, B., Aas, M., Andreassen, O.A., et al. Childhood trauma is associated with severe clinical characteristics of bipolar disorders. J Clin Psychiatry. 2013;74:991–8.CrossRefGoogle ScholarPubMed
Evans, D.L., Nemeroff, C.B., The dexamethasone suppression test in mixed bipolar disorder. Am J Psychiatry. 1983;140:615–17.Google ScholarPubMed
Fillman, S.G., Sinclair, D., Fung, S.J., et al. Markers of inflammation and stress distinguish subsets of individuals with schizophrenia and bipolar disorder. Transl Psychiatry. 2014;4:e365.CrossRefGoogle Scholar
Flores, B.H., Kenna, H., Keller, J., et al. Clinical and biological effects of mifepristone treatment for psychotic depression. Neuropsychopharmacology. 2006;31: 628–36.CrossRefGoogle ScholarPubMed
Frank, M.G., Baratta, M.V., Sprunger, D.B., et al. Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav Immun. 2007;21:4759.CrossRefGoogle ScholarPubMed
Frank, M.G., Miguel, Z.D., Watkins, L.R., et al. Prior exposure to glucocorticoids sensitizes the neuroinflammatory and peripheral inflammatory responses to E. coli lipopolysaccharide. Brain Behav Immun. 2010;24:1930.CrossRefGoogle ScholarPubMed
Frank, M.G., Thompson, B.M., Watkins, L.R., et al. Glucocorticoids mediate stress-induced priming of microglial pro-inflammatory responses. Brain Behav Immun. 2012;26:337345.CrossRefGoogle ScholarPubMed
Frodl, T., Meisenzahl, E., Zetzsche, T., et al. Enlargement of the amygdala in patients with a first episode of major depression. Biol Psychiatry. 2002;51:708–14.CrossRefGoogle ScholarPubMed
Godwin, C.D., Greenberg, L.B., Shukla, S., Consistent dexamethasone suppression test results with mania and depression in bipolar illness. Am J Psychiatry. 1984;141:1263–5.Google ScholarPubMed
Grover, D., Verma, R., Goes, F.S., et al. Family-based association of YWHAH in psychotic bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 2009;150B:977–83.CrossRefGoogle ScholarPubMed
Heuser, I., Yassouridis, A., Holsboer, F., The combined dexamethasone/CRH test: a refined laboratory test for psychiatric disorders. J Psychiatr Res. 1994;28:341–56.CrossRefGoogle Scholar
Kapczinski, F., Vieta, E., Andreazza, A.C., et al. Allostatic load in bipolar disorder: implications for pathophysiology and treatment. Neurosci Biobehav Rev. 2008;32:675–92.CrossRefGoogle ScholarPubMed
Kendler, K.S., Karkowski, L.M., Prescott, C.A., Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry. 1999;156:837–41.CrossRefGoogle ScholarPubMed
Klengel, T., Mehta, D., Anacker, C., et al. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci. 2013;16:3341.CrossRefGoogle ScholarPubMed
Krishnan, R.R., Maltbie, A.A., Davidson, J.R., Abnormal cortisol suppression in bipolar patients with simultaneous manic and depressive symptoms. Am J Psychiatry. 1983;140:203–5.Google ScholarPubMed
Leszczynska-Rodziewicz, A., Maciukiewicz, M., Szczepankiewicz, A., et al. Association between OPCRIT dimensions and polymorphisms of HPA axis genes in bipolar disorder. J Affect Disord. 2013;151:744–7.CrossRefGoogle ScholarPubMed
Linkowski, P., Kerkhofs, M., Van Onderbergen, A., et al. The 24-hour profiles of cortisol, prolactin, and growth hormone secretion in mania. Arch Gen Psychiatry. 1994;51:616–24.CrossRefGoogle ScholarPubMed
Lopez, J.F., Chalmers, D.T., Little, K.Y., et al. A.E. Bennett Research Award. Regulation of serotonin1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression. Biol Psychiatry. 1998;43:547–73.CrossRefGoogle ScholarPubMed
MacMaster, F.P., Leslie, R., Rosenberg, D.R., et al. Pituitary gland volume in adolescent and young adult bipolar and unipolar depression. Bipolar Disord. 2008;10:101–4.CrossRefGoogle Scholar
Macritchie, K.A., Gallagher, P., Lloyd, A.J., et al. Periventricular white matter integrity and cortisol levels in healthy controls and in euthymic patients with bipolar disorder: an exploratory analysis. J Affect Disord. 2013;148:249–55.CrossRefGoogle ScholarPubMed
Matsubara, T., Funato, H., Kobayashi, A., et al. Reduced glucocorticoid receptor alpha expression in mood disorder patients and first-degree relatives. Biol Psychiatry. 2006;59:689–95.CrossRefGoogle ScholarPubMed
McEwen, B.S., Stress, adaptation, and disease. Allostasis and allostatic load. Ann N Y Acad Sci. 1998;840:3344.CrossRefGoogle ScholarPubMed
McEwen, B.S., Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann N Y Acad Sci. 2004a;1032:17.CrossRefGoogle Scholar
McEwen, B.S., Structural plasticity of the adult brain: how animal models help us understand brain changes in depression and systemic disorders related to depression. Dialogues Clin Neurosci. 2004b;6:119–33.CrossRefGoogle ScholarPubMed
McEwen, B.S., Protective and damaging effects of stress mediators: central role of the brain. Dialogues Clin Neurosci. 2006;8:367–81.CrossRefGoogle ScholarPubMed
Minton, G.O., Young, A.H., McQuade, R., et al. Profound changes in dopaminergic neurotransmission in the prefrontal cortex in response to flattening of the diurnal glucocorticoid rhythm: implications for bipolar disorder. Neuropsychopharmacology. 2009;34:2265–74.CrossRefGoogle ScholarPubMed
Mondelli, V., Dazzan, P., Gabilondo, A., et al. Pituitary volume in unaffected relatives of patients with schizophrenia and bipolar disorder. Psychoneuroendocrinology. 2008;33:1004–12.CrossRefGoogle ScholarPubMed
Nair, A., Bonneau, R.H., Stress-induced elevation of glucocorticoids increases microglia proliferation through NMDA receptor activation. J Neuroimmunol. 2006;171:7285.CrossRefGoogle ScholarPubMed
Nemec, D., Szczepankiewicz, A., Leszczynska-Rodziewicz, A., et al. [No association of glucocorticoid receptor gene polymorphism (rs6190) with unipolar and bipolar disorder.] Psychiatr Pol. 2013;47:647–55.Google ScholarPubMed
Newcomer, J.W., Craft, S., Hershey, T., et al. Glucocorticoid-induced impairment in declarative memory performance in adult humans. J Neurosci. 1994;14:2047–53.CrossRefGoogle ScholarPubMed
Ostiguy, C.S., Ellenbogen, M.A., Walker, C.D., et al. Sensitivity to stress among the offspring of parents with bipolar disorder: a study of daytime cortisol levels. Psychol Med. 2011;41:2447–57.CrossRefGoogle ScholarPubMed
Owen, D.R., Yeo, A.J., Gunn, R.N., et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. 2012;32:15.CrossRefGoogle ScholarPubMed
Pariante, C.M., Miller, A.H., Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry. 2001;49: 391404.CrossRefGoogle ScholarPubMed
Perroud, N., Dayer, A., Piguet, C., et al. Childhood maltreatment and methylation of the glucocorticoid receptor gene NR3C1 in bipolar disorder. Br J Psychiatry. 2014;204:30–5.CrossRefGoogle ScholarPubMed
Qi, X.R., Kamphuis, W., Wang, S., et al. Aberrant stress hormone receptor balance in the human prefrontal cortex and hypothalamic paraventricular nucleus of depressed patients. Psychoneuroendocrinology. 2013;38: 863–70.CrossRefGoogle ScholarPubMed
Rajkowska, G., Miguel-Hidalgo, J.J., Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets. 2007;6:219–33.CrossRefGoogle ScholarPubMed
Rybakowski, J.K., Twardowska, K., The dexamethasone/corticotropin-releasing hormone test in depression in bipolar and unipolar affective illness. J Psychiatr Res. 1999;33:363–70.CrossRefGoogle ScholarPubMed
Sapolsky, R.M., McEwen, B.S., Down-regulation of neural corticosterone receptors by corticosterone and dexamethasone. Brain Res. 1985;339: 161–5.CrossRefGoogle ScholarPubMed
Sapolsky, R.M., Romero, L.M., Munck, A.U., How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrinol Rev. 2000;21:5589.Google ScholarPubMed
Sassi, R.B., Nicoletti, M., Brambilla, P., et al. Decreased pituitary volume in patients with bipolar disorder. Biol Psychiatry. 2001;50:271–80.CrossRefGoogle ScholarPubMed
Schlesser, M.A., Winokur, G., Sherman, B.M., Hypothalamic–pituitary–adrenal axis activity in depressive illness. Its relationship to classification. Arch Gen Psychiatry. 1980;37:737–43.CrossRefGoogle ScholarPubMed
Schmider, J., Lammers, C.H., Gotthardt, U., et al. Combined dexamethasone/corticotropin-releasing hormone test in acute and remitted manic patients, in acute depression, and in normal controls: I. Biol Psychiatry. 1995;38:797802.CrossRefGoogle ScholarPubMed
Schulkin, J., McEwen, B.S., Gold, P.W., Allostasis, amygdala, and anticipatory angst. Neurosci Biobehav Rev. 1994;18:385–96.CrossRefGoogle ScholarPubMed
Sheline, Y.I., Barch, D.M., Donnelly, J.M., et al. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol Psychiatry. 2001;50:651–8.CrossRefGoogle ScholarPubMed
Sinclair, D., Tsai, S.Y., Woon, H.G., et al. Abnormal glucocorticoid receptor mRNA and protein isoform expression in the prefrontal cortex in psychiatric illness. Neuropsychopharmacology. 2011;36:2698–709.CrossRefGoogle ScholarPubMed
Sinclair, D., Webster, M.J., Fullerton, J.M., et al. Glucocorticoid receptor mRNA and protein isoform alterations in the orbitofrontal cortex in schizophrenia and bipolar disorder. BMC Psychiatry. 2012;12:84.CrossRefGoogle ScholarPubMed
Sinclair, D., Fillman, S.G., Webster, M.J., et al. Dysregulation of glucocorticoid receptor co-factors FKBP5, BAG1 and PTGES3 in prefrontal cortex in psychotic illness. Sci Rep. 2013;3:3539.CrossRefGoogle ScholarPubMed
Spijker, A.T., van Rossum, E.F., Hoencamp, E., et al. Functional polymorphism of the glucocorticoid receptor gene associates with mania and hypomania in bipolar disorder. Bipolar Disord. 2009;11: 95101.CrossRefGoogle ScholarPubMed
Spijker, A.T., Giltay, E.J., van Rossum, E.F., et al. Glucocorticoid and mineralocorticoid receptor polymorphisms and clinical characteristics in bipolar disorder patients. Psychoneuroendocrinology. 2011;36:1460–9.CrossRefGoogle ScholarPubMed
Starkman, M.N., Gebarski, S.S., Berent, S., et al. Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing’s syndrome. Biol Psychiatry. 1992;32:756–65.CrossRefGoogle ScholarPubMed
Stokes, P.E., Pick, G.R., Stoll, P.M., et al. Pituitary–adrenal function in depressed patients: Resistance to dexamethasone suppression J Psychiatr Res. 1975;12:271–81.CrossRefGoogle Scholar
Strakowski, S.M., DelBello, M.P., Sax, K.W., et al. Brain magnetic resonance imaging of structural abnormalities in bipolar disorder. Arch Gen Psychiatry. 1999;56:254–60.CrossRefGoogle ScholarPubMed
Sugama, S., Fujita, M., Hashimoto, M., et al. Stress induced morphological microglial activation in the rodent brain: involvement of interleukin-18. Neuroscience. 2007;146:1388–99.CrossRefGoogle ScholarPubMed
Sugama, S., Takenouchi, T., Fujita, M., et al. Differential microglial activation between acute stress and lipopolysaccharide treatment. J Neuroimmunol. 2009;207:2431.CrossRefGoogle ScholarPubMed
Sugama, S., Takenouchi, T., Fujita, M., et al. Cold stress induced morphological microglial activation and increased IL-1beta expression in astroglial cells in rat brain. J Neuroimmunol. 2011;233:2936.CrossRefGoogle ScholarPubMed
Swann, A.C., Stokes, P.E., Casper, R., et al. Hypothalamic–pituitary–adrenocortical function in mixed and pure mania. Acta Psychiatr Scand. 1992;85:270–4.CrossRefGoogle ScholarPubMed
Szczepankiewicz, A., Leszczynska-Rodziewicz, A., Pawlak, J., et al. Glucocorticoid receptor polymorphism is associated with major depression and predominance of depression in the course of bipolar disorder. J Affect Disord. 2011a;134:138–44.CrossRefGoogle ScholarPubMed
Szczepankiewicz, A., Rybakowski, J.K., Suwalska, A., et al. Glucocorticoid receptor polymorphism is associated with lithium response in bipolar patients. Neuro Endocrinol Lett. 2011b;32:545–51.Google ScholarPubMed
Szczepankiewicz, A., Leszczynska-Rodziewicz, A., Pawlak, J., et al. FKBP5 polymorphism is associated with major depression but not with bipolar disorder. J Affect Disord. 2014;164:33–7.CrossRefGoogle Scholar
Takahashi, T., Walterfang, M., Wood, S.J., et al. Pituitary volume in patients with bipolar disorder and their first-degree relatives. J Affect Disord. 2010;124:256–61.CrossRefGoogle ScholarPubMed
Thompson, J.M., Gallagher, P., Hughes, J.H., et al. Neurocognitive impairment in euthymic patients with bipolar affective disorder. Br J Psychiatry. 2005;186:3240.CrossRefGoogle ScholarPubMed
Tomitaka, S., Sakamoto, K., Kojima, I., et al. Serial dexamethasone suppression tests by measuring urinary cortisol among rapidly cycling patients. Biol Psychiatry. 1995;38:128–30.CrossRefGoogle ScholarPubMed
Tynan, R.J., Naicker, S., Hinwood, M., et al. Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behav Immun. 2010;24:1058–68.CrossRefGoogle Scholar
Vieta, E., Gasto, C., Martinez de Osaba, M.J., et al. Prediction of depressive relapse in remitted bipolar patients using corticotrophin-releasing hormone challenge test. Acta Psychiatr Scand. 1997;95:205–11.CrossRefGoogle ScholarPubMed
Vieta, E., Martinez-De-Osaba, M.J., Colom, F., et al. Enhanced corticotropin response to corticotropin-releasing hormone as a predictor of mania in euthymic bipolar patients. Psychol Med. 1999;29:971–8.CrossRefGoogle ScholarPubMed
Vyas, A., Mitra, R., Shankaranarayana Rao, B.S., et al. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci. 2002;22:6810–18.CrossRefGoogle ScholarPubMed
Wager-Smith, K., Markou, A., Depression: a repair response to stress-induced neuronal microdamage that can grade into a chronic neuroinflammatory condition? Neurosci Biobehav Rev. 2011;35:742–64.CrossRefGoogle ScholarPubMed
Walker, F.R., Nilsson, M., Jones, K., Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr Drug Targets. 2013;14:1262–76.CrossRefGoogle ScholarPubMed
Wang, Q., Verweij, E.W., Krugers, H.J., et al. Distribution of the glucocorticoid receptor in the human amygdala; changes in mood disorder patients. Brain Struct Funct. 2014;219(5):1615–26.CrossRefGoogle ScholarPubMed
Watson, S., Gallagher, P., Ritchie, J.C., et al. Hypothalamic–pituitary–adrenal axis function in patients with bipolar disorder. Br J Psychiatry. 2004;184:496502.CrossRefGoogle ScholarPubMed
Watson, S., Thompson, J.M., Malik, N., et al. Temporal stability of the dex/CRH test in patients with rapid-cycling bipolar I disorder: a pilot study. Aust N Z J Psychiatry. 2005;39:244–8.CrossRefGoogle ScholarPubMed
Watson, S., Thompson, J.M., Ritchie, J.C., et al. Neuropsychological impairment in bipolar disorder: the relationship with glucocorticoid receptor function. Bipolar Disord. 2006;8:8590.CrossRefGoogle ScholarPubMed
Watson, S., Gallagher, P., Porter, R.J., et al. A randomized trial to examine the effect of mifepristone on neuropsychological performance and mood in patients with bipolar depression. Biol Psychiatry. 2012;72:943–9.CrossRefGoogle ScholarPubMed
Watson, S., Gallagher, P., Dougall, D., et al. Childhood trauma in bipolar disorder. Aust N Z J Psychiatry. 2013;48:564–70.Google ScholarPubMed
Webster, M.J., Knable, M.B., O’Grady, J., et al. Regional specificity of brain glucocorticoid receptor mRNA alterations in subjects with schizophrenia and mood disorders. Mol Psychiatry. 2002;7: 924, 985–94.CrossRefGoogle ScholarPubMed
Willour, V.L., Chen, H., Toolan, J., et al. Family-based association of FKBP5 in bipolar disorder. Mol Psychiatry. 2009;14: 261–8.CrossRefGoogle ScholarPubMed
Wood, G.E., Young, L.T., Reagan, L.P., et al. Stress-induced structural remodeling in hippocampus: prevention by lithium treatment. Proc Natl Acad Sci U S A. 2004;101:3973–8.CrossRefGoogle ScholarPubMed
Xing, G.Q., Russell, S., Webster, M.J., et al. Decreased expression of mineralocorticoid receptor mRNA in the prefrontal cortex in schizophrenia and bipolar disorder. Int J Neuropsychopharmacol. 2004;7:143–53.CrossRefGoogle ScholarPubMed
Young, A.H., Sahakian, B.J., Robbins, T.W., et al. The effects of chronic administration of hydrocortisone on cognitive function in normal male volunteers. Psychopharmacology (Berl). 1999;145:260–6.CrossRefGoogle ScholarPubMed
Young, A.H., Gallagher, P., Watson, S., et al. Improvements in neurocognitive function and mood following adjunctive treatment with mifepristone (RU-486) in bipolar disorder. Neuropsychopharmacology. 2004;29:1538–45.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×