Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-30T06:44:07.704Z Has data issue: false hasContentIssue false

Chapter 2 - Δ9-Tetrahydrocannabinol (THC) and Cannabidiol (CBD)

from Section 1 - An Introduction to Cannabinoid Science

Published online by Cambridge University Press:  12 October 2020

Steven James
Affiliation:
University of California, San Diego
Get access

Summary

Cannabis sativa is known to contain over 100 phytocannabinoid compounds plus a mixture of other molecules including terpenes and flavonoids. Collectively, well over 500 different compounds are known to naturally occur in C. sativa and very likely many intriguing properties and potential uses of C. sativa still await discovery. Δ9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) are two of the most common cannabinoids present in the plant and considerable scientific attention has been devoted to these common, but very different, cannabinoids.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, I. B. and Martin, B. R. (1996) ‘Cannabis: pharmacology and toxicology in animals and humans’, Addiction, 91(11), 15851614. doi:10.1046/j.1360-0443.1996.911115852.x.Google Scholar
Agurell, S. et al. (1986) ‘Pharmacokinetics and metabolism of Δ1-tetrahydrocannabinol and other cannabinoids with emphasis on man’, Pharmacological Reviews, 38(1), 2143.Google Scholar
Bartner, L. R. et al. (2018) ‘Pharmacokinetics of cannabidiol administered by 3 delivery methods at 2 different dosages to healthy dogs’, Canadian Journal of Veterinary Research, 82(3), 178183. Available at: www.ingentaconnect.com/content/cvma/cjvr/2018/00000082/00000003/art00002.Google ScholarPubMed
Bonn-Miller, M. O. et al. (2017). ‘Labeling accuracy of cannabidiol extracts sold online’, JAMA: The Journal of the American Medical Association, 318(17), 17081709. doi:10.1001/jama.2017.11909.Google Scholar
Brenneisen, R. (2007) ‘Chemistry and analysis of phytocannabinoids and other cannabis constituents’, in Marijuana and the Cannabinoids. Totowa: Humana Press, pp. 1749. doi:10.1007/978-1-59259-947-9_2.Google Scholar
Brown, A. J. (2009) ‘Novel cannabinoid receptors’, British Journal of Pharmacology, 152(5), 567575. doi:10.1038/sj.bjp.0707481.CrossRefGoogle Scholar
Burstein, S., Rosenfeld, J. and Wittstruck, T. (1972) ‘Isolation and characterization of two major urinary metabolites of Dgr1-tetrahydrocannabinol’, Science, 176(4033), 422423. doi:10.1126/science.176.4033.422.Google Scholar
Clean Label Project (2019) https://cleanlabelproject.org/ (Accessed: December 1, 2019).Google Scholar
De Petrocellis, L. et al. (2012) ‘Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation’, Acta Physiologica, 204(2), 255266. doi:10.1111/j.1748-1716.2011.02338.x.Google Scholar
Gaoni, Y. and Mechoulam, R. (1964) ‘Isolation, structure, and partial synthesis of an active constituent of hashish’, Journal of the American Chemical Society, 86(8), 16461647. doi:10.1021/ja01062a046.CrossRefGoogle Scholar
Gaston, T. E. et al. (2017) ‘Interactions between cannabidiol and commonly used antiepileptic drugs’, Epilepsia, 58(9), 15861592. doi:10.1111/epi.13852.CrossRefGoogle ScholarPubMed
Geffrey, A. L. et al. (2015) ‘Drug-drug interaction between clobazam and cannabidiol in children with refractory epilepsy’, Epilepsia, 56(8), 12461251. doi:10.1111/epi.13060.CrossRefGoogle ScholarPubMed
Gonca, E. and Darıcı, F. (2015) ‘The effect of cannabidiol on ischemia/reperfusion-induced ventricular arrhythmias’, Journal of Cardiovascular Pharmacology and Therapeutics, 20(1), 7683. doi:10.1177/1074248414532013.CrossRefGoogle ScholarPubMed
Grayson, L. et al. (2018) ‘An interaction between warfarin and cannabidiol, a case report.’, Epilepsy & Behavior Case Reports, 9, 1011. doi:10.1016/j.ebcr.2017.10.001.CrossRefGoogle ScholarPubMed
Greenberg, H. S. et al. (1994) ‘Short‐term effects of smoking marijuana on balance in patients with multiple sclerosis and normal volunteers’, Clinical Pharmacology & Therapeutics, 55(3), 324328. doi:10.1038/clpt.1994.33.CrossRefGoogle ScholarPubMed
Gregg, L. C. et al. (2012). ‘Activation of type 5 metabotropic glutamate receptors and diacylglycerol lipase-α initiates 2-arachidonoylglycerol formation and endocannabinoid-mediated analgesia’, Journal of Neuroscience, 32(28), 94579468. doi:10.1523/JNEUROSCI.0013-12.2012.Google Scholar
Grotenhermen, F. (2002) ‘The medical use of cannabis in Germany’, Journal of Drug Issues, 32(2), 607634. doi:10.1177/002204260203200218.CrossRefGoogle Scholar
Grotenhermen, F. (2003) ‘Pharmacokinetics and pharmacodynamics of cannabinoids’, Clinical Pharmacokinetics, 42(4), 327360. doi:10.2165/00003088-200342040-00003.Google Scholar
Halldin, M. M. et al. (1982) ‘Urinary metabolites of delta 1-tetrahydrocannabinol in man.’, Arzneimittel-Forschung, 32(7), 764–8. Available at: www.ncbi.nlm.nih.gov/pubmed/6289845.Google ScholarPubMed
Harvey, D. J. (1999) ‘Absorption, distribution, and biotransformation of the cannabinoids’, in Marihuana and Medicine. Totowa: Humana Press, pp. 91103. doi:10.1007/978-1-59259-710-9_10.Google Scholar
Harvey, D. J. and Mechoulam, R. (1990) ‘Metabolites of cannabidiol identified in human urine’, Xenobiotica, 20(3), 303320. doi:10.3109/00498259009046849.Google Scholar
Harvey, D. J., Samara, E. and Mechoulam, R. (1991) ‘Comparative metabolism of cannabidiol in dog, rat and man’, Pharmacology Biochemistry and Behavior, 40(3), 523532. doi:10.1016/0091-3057(91)90358-9.CrossRefGoogle ScholarPubMed
Hawksworth, G. and McArdle, K. (2004) ‘Metabolism and pharmacokinetics of cannabinoids’, in Guy, G, Whittle, B and Robson, P (eds.), The Medicinal Uses of Cannabis and Cannabinoids. London: London Pharmaceutical Press. pp. 205228.Google Scholar
Hejazi, N. et al. (2006) ‘Δ9-Tetrahydrocannabinol and endogenous cannabinoid anandamide directly potentiate the function of glycine receptors’, Molecular Pharmacology, 69(3), 991997. doi:10.1124/mol.105.019174.CrossRefGoogle ScholarPubMed
Hinz, B. and Ramer, R. (2019) ‘Anti-tumour actions of cannabinoids’, British Journal of Pharmacology, 176(10), 13841394. doi:10.1111/bph.14426.CrossRefGoogle ScholarPubMed
Huestis, M. A. (2007) ‘Human cannabinoid pharmacokinetics’, Chemistry and Biodiversity, 4(8), 17701804. doi:10.1002/cbdv.200790152.CrossRefGoogle ScholarPubMed
Ibeas Bih, C. et al. (2015) ‘Molecular targets of cannabidiol in neurological disorders’, Neurotherapeutics, 12(4), 699730. doi:10.1007/s13311-015-0377-3.CrossRefGoogle ScholarPubMed
Jiang, R. et al. (2011) ‘Identification of cytochrome P450 enzymes responsible for metabolism of cannabidiol by human liver microsomes’, Life Sciences, 89(5–6), 165170. doi:10.1016/j.lfs.2011.05.018.Google Scholar
Kathmann, M. et al. (2006) ‘Cannabidiol is an allosteric modulator at mu- and delta-opioid receptors’, Naunyn-Schmiedeberg’s Archives of Pharmacology, 372(5), 354361. doi:10.1007/s00210-006-0033-x.CrossRefGoogle ScholarPubMed
Lauckner, J. et al. (2008) ‘GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current’, Proceedings of the National Academy of Sciences of the United States of America, 105(7), 26992704. Available at: www.pnas.org/content/105/7/2699.short.CrossRefGoogle ScholarPubMed
Lucas, C. J., Galettis, P. and Schneider, J. (2018) ‘The pharmacokinetics and the pharmacodynamics of cannabinoids’, British Journal of Clinical Pharmacology, 84(11), 24772482. doi:10.1111/bcp.13710.CrossRefGoogle ScholarPubMed
Mahgoub, M. et al. (2013) ‘Effects of cannabidiol on the function of α7-nicotinic acetylcholine receptors’, European Journal of Pharmacology, 720(1–3), 310319. doi:10.1016/j.ejphar.2013.10.011.Google Scholar
Martin, B. R. et al. (1991) ‘Behavioral, biochemical, and molecular modeling evaluations of cannabinoid analogs’, Pharmacology Biochemistry and Behavior, 40(3), 471478. doi:10.1016/0091-3057(91)90349-7.Google Scholar
McHugh, D. et al. (2012) ‘Δ9-Tetrahydrocannabinol and N-arachidonyl glycine are full agonists at GPR18 receptors and induce migration in human endometrial HEC-1B cells’, British Journal of Pharmacology, 165(8), 24142424. doi:10.1111/j.1476-5381.2011.01497.x.Google Scholar
Millar, S. A. et al. (2018) ‘A systematic review on the pharmacokinetics of cannabidiol in humans’, Frontiers in Pharmacology, 9, 1365. doi:10.3389/fphar.2018.01365.Google Scholar
Moreno-Navarrete, J. M. et al. (2012) ‘The L-α-lysophosphatidylinositol/GPR55 system and its potential role in human obesity.’, Diabetes, 61(2), 281291. doi:10.2337/db11-0649.Google Scholar
Newmeyer, M. N. et al. (2016) ‘Free and glucuronide whole blood cannabinoids’ pharmacokinetics after controlled smoked, vaporized, and oral cannabis administration in frequent and occasional cannabis users: identification of recent cannabis intake’, Clinical Chemistry, 62(12), 15791592. doi:10.1373/clinchem.2016.263475.Google Scholar
Ohlsson, A. et al. (1986) ‘Single-dose kinetics of deuterium-labelled cannabidiol in man after smoking and intravenous administration’, Biological Mass Spectrometry, 13(2), 7783. doi:10.1002/bms.1200130206.Google Scholar
O’Sullivan, S. E. (2007) ‘Cannabinoids go nuclear: evidence for activation of peroxisome proliferator-activated receptors’, British Journal of Pharmacology, 152(5), 576582. doi:10.1038/sj.bjp.0707423.Google Scholar
Penumarti, A. and Abdel-Rahman, A. A. (2014) ‘The novel endocannabinoid receptor GPR18 is expressed in the rostral ventrolateral medulla and exerts tonic restraining influence on blood pressure’, Journal of Pharmacology and Experimental Therapeutics, 349(4), 2938. doi:10.1124/jpet.113.209213.CrossRefGoogle ScholarPubMed
Pertwee, RG. et al. (2010) ‘International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2’, Pharmacological Reviews, 62(4), 588631. doi:10.1124/pr.110.003004.588.Google Scholar
Pistis, M. and O’Sullivan, S. E. (2017) ‘The role of nuclear hormone receptors in cannabinoid function’, Advances in Pharmacology, 80, 291328. doi:10.1016/bs.apha.2017.03.008.Google Scholar
Ramer, R. et al. (2013) ‘COX-2 and PPAR-γ confer cannabidiol-induced apoptosis of human lung cancer cells’, Molecular Cancer Therapeutics, 12(1), 6982. doi:10.1158/1535-7163.MCT-12-0335.Google Scholar
Russo, E. B. et al. (2005). ‘Agonistic properties of cannabidiol at 5-HT1a receptors’, Neurochemical Research, 30(8), 10371043. doi:10.1007/s11064-005-6978-1.Google Scholar
Ryberg, E. et al. (2009) ‘The orphan receptor GPR55 is a novel cannabinoid receptor’,British Journal of Pharmacology, 152(7), 10921101. doi:10.1038/sj.bjp.0707460.CrossRefGoogle Scholar
Sagredo, O. et al. (2007) ‘Cannabinoids and neuroprotection in basal ganglia disorders’, Molecular Neurobiology, 36(1), 8291. doi:10.1007/s12035-007-0004-3.Google Scholar
Sagredo, O. et al. (2011) ‘Neuroprotective effects of phytocannabinoid-based medicines in experimental models of Huntington’s disease’, Journal of Neuroscience Research, 89(9), 15091518. doi:10.1002/jnr.22682.Google Scholar
Stinchcomb, A. L. et al. (2004) ‘Human skin permeation of Δ 8-tetrahydrocannabinol, cannabidiol and cannabinol’, Journal of Pharmacy and Pharmacology, 56(3), 291297. doi:10.1211/0022357022791.Google Scholar
Stout, S. M. and Cimino, N. M. (2014) ‘Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review’, Drug Metabolism Reviews, 46(1), 8695. doi:10.3109/03602532.2013.849268.Google Scholar
Xiong, W. et al. (2012) ‘Cannabinoids suppress inflammatory and neuropathic pain by targeting α3 glycine receptors’, Journal of Experimental Medicine, 209(6), 11211134. doi:10.1084/jem.20120242.Google Scholar
Yamaori, S. et al. (2010) ‘Characterization of major phytocannabinoids, cannabidiol and cannabinol, as isoform-selective and potent inhibitors of human CYP1 enzymes’, Biochemical Pharmacology, 79(11), 16911698. doi:10.1016/j.bcp.2010.01.028.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×