Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-17T03:43:13.725Z Has data issue: false hasContentIssue false

Chapter 4 - Cellular and Molecular Changes

Published online by Cambridge University Press:  05 January 2019

Michael W. Hoffmann
Affiliation:
University of Central Florida
Get access
Type
Chapter
Information
Assembly of the Executive Mind
Evolutionary Insights and a Paradigm for Brain Health
, pp. 70 - 86
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown-Sequard, CE. Séance du 18 decembre. CR Soc Biol 1875; 424.Google Scholar
Lieberman, P. Synapses, language and being human. Science 2013; 342: 944945.CrossRefGoogle ScholarPubMed
Saxena, S, Caroni, P. Selective neuronal vulnerability in neurodegenerative disease: from stressor thresholds to degeneration. Neuron 2011; 71: 3548.CrossRefGoogle ScholarPubMed
Crossley, NA, Mechelli, A, Scott, J, et al. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 2014; 137: 23822395.CrossRefGoogle ScholarPubMed
Liu, X, Li, G, Xiong, S, et al. Hierarchical alteration of brain structural and functional networks in female migraine sufferers. PLoS One 2012; 7: e51250.Google Scholar
Buckner, RL, Sepulchre, J, Talukdar, T, et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability and relation to Alzheimer's disease. J Neurosci 2009; 29: 18601873.Google Scholar
Seeley, WW, Menon, V, Schatzberg, AF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007; 27: 23492356.CrossRefGoogle ScholarPubMed
Han, K, MacDonald, CL, Johnson, AM, et al. Disrupted modular organization of resting state cortical functional connectivity in US military personnel following concussive “mild” blast related traumatic brain injury. Neuroimage 2014; 84: 7696.Google Scholar
Achard, S, Delon-Martin, C, Vértes, PE, et al. Hubs of brain functional networks are radically reorganized in comatose patients. PNAS 2012; 109: 2060820613.CrossRefGoogle ScholarPubMed
Rosanova, M, Gosseries, O, Casarotto, S, et al. Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients. Brain 2012; 135: 13081320.CrossRefGoogle ScholarPubMed
Stam, CJ. Modern network science of neurological disorders. Nat Rev Neurosci 2014; 15: 683695.CrossRefGoogle ScholarPubMed
Bruner, E, Jacobs, HI. Alzheimer's disease: the downside of a highly evolved parietal lobe? J Alzheimers Dis 2013; 35(2): 227240.CrossRefGoogle ScholarPubMed
Attwell, D, Laughlin, SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 2001; 21: 11331145.CrossRefGoogle ScholarPubMed
Zimmerman, M. The nervous system in the context of information theory. In Schmidt, RF, Thews, G (eds.), Human Physiology. Springer, Berlin, 1989.Google Scholar
Hassin, RR, Uleman, JS, Bargh, JA. The New Unconscious. Oxford University Press, Oxford, 2005.Google Scholar
Libet, B, Gleason, CA, Wright, EW, Pearl, DK. Time of conscious intention to act in relation to onset of cerebral activity (readiness potential): the unconscious initiation of a freely voluntary act. Brain 1983; 106: 623642.CrossRefGoogle ScholarPubMed
Squire, L, Berg, D, Bloom, FE, et al. Gliotransmission. In Fundamental Neuroscience. Elsevier, Amsterdam, 2012.Google Scholar
Diamond, MC, Scheibel, AB, Murphy, GM Jr, Harvey, T. On the brain of a scientist: Albert Einstein. Exp Neurol 1985; 88(1): 198204.CrossRefGoogle ScholarPubMed
Falk, D. New information about Albert Einstein's brain. Front Evol Neurosci 2009; 1: 3.CrossRefGoogle ScholarPubMed
Oberheim, NA, Takano, T, Han, X, et al. Uniquely hominid features of adult human astrocytes. J Neurosci 2009; 29(10): 3276.CrossRefGoogle ScholarPubMed
Han, X, Chen, M, Wang, F, et al. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 2013; 12: 342353.CrossRefGoogle ScholarPubMed
Tremblay, ME, Lowery, AL, Majewska, AK. Microglial interactions with synapses are modulated by visual experience. Commun Integr Biol 2011; 4: 220222.Google Scholar
Lennie, P. The cost of cortical computation. Curr Biol 2003; 13: 493497.Google Scholar
Sherwood, CC, Stimpson, CD, Raghanti, MA, et al. Evolution of increased glia–neuron ratios in the human frontal cortex. PNAS 2006; 103: 1360613611.CrossRefGoogle ScholarPubMed
Oberheim, NA, Wang, X, Goldman, S, Nedergaard, M. Astrocyte complexity distinguishes the human brain. Trends Neurosci 2006; 29: 547553.CrossRefGoogle ScholarPubMed
Ricci, G, Volpi, L, Pasquali, L, Petrozzi, L, Siciliano, G. Astrocyte–neuron interactions in neurological disorders. J Biol Phys 2009; 35: 317336.CrossRefGoogle ScholarPubMed
Arnold, WH, von Zieten, P, Schmidt, E. Measurements of postnatal growth of the skull of Pan troglodytes verus using lateral cephalograms. Anthropol Anz 2003; 61: 190132.CrossRefGoogle ScholarPubMed
Bruner, E, Preuss, TM, Chen, X, Rilling, JK. Evidence for expansion of the precuneus in human evolution. Brain Struct Funct 2017; 222(2): 10531060.CrossRefGoogle ScholarPubMed
Semendeferi, K, Armstrong, E, Schleicher, A, Zilles, K, Van Hoesen, GW. Limbic frontal cortex in hominoids: a comparative study of area 13. Am J Phys Anthropol 1998; 106: 129155.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Semendeferi, K, Armstrong, E, Schleicher, A, Zilles, K, Van Hoesen, GW. Prefrontal cortex in humans and apes: a comparative study of area 10. Am J Phys Anthropol 2001; 114: 224241.Google Scholar
Hof, PR, Mufson, EJ, Morrison, JH. Human orbitofrontal cortex: cytoarchitecture and quantitative immuno-histochemical parcellation. J Comp Neurol 1995; 359: 4868.CrossRefGoogle Scholar
Kim, EJ, Sidhu, M, Gaus, SE, et al. Selective frontoinsular von Economo neuron and fork cell loss in early behavioral variant frontotemporal dementia. Cerebral Cortex 2012; 22: 251259.Google Scholar
Allman, JM, Tetreault, NA, Hakeem, AY, Park, S. The von Economo neurons in apes and humans. Am J Hum Biol 2011; 23(1): 521.CrossRefGoogle ScholarPubMed
Hof, PR, Van Der Gucht, E. Structure of the cerebral cortex of the humpback whale, Megaptera novaeangeliae. Anat Record A Discov Mol Cell Evol Biol 2007; 290: 131.Google Scholar
Schenker, N, Desgouttes, AM, Semendeferi, K. Neural connectivity and cortical substrates of cognition in hominoids. J Hum Evol 2005; 49: 547569.CrossRefGoogle ScholarPubMed
Schumann, C, Amaral, DG. Stereological estimation of the number of neurons in the human amygdaloid complex. J Comp Neurol 2005; 491: 320329.Google Scholar
Barton, RA, Aggleton, JP, Grenyer, R. Evolutionary coherence of the mammalian amygdala. Proc Biol Sci 2003; 270: 539543.CrossRefGoogle ScholarPubMed
Brothers, L. The social brain: a project for integrating primate behavior and neurophysiology in a new domain. Concepts Neurosci 1990; 1: 2751.Google Scholar
Bargar, N, Stefanacci, L, Semendeferi, K. A comparative volumetric analysis of amygdaloid complex and basolateral division in the human and ape brain. Am J Phys Anthropol 2007; 134: 392403.CrossRefGoogle Scholar
Subiaul, F. Mosaic cognitive evolution: the case of imitation behavior. In: Broadfield, D, Yuan, M, Schick, K, Toth, N (eds.), The Human Brain Evolving. Stone Age Institute Press, Gosport, IN, 2010.Google Scholar
Passinghim, RE, Stephan, KE, Kotter, R. The anatomical basis of functional localization in the cortex. Nat Rev Neurosci 2002; 3: 606616.CrossRefGoogle Scholar
Willamson, PC, Allman, JM. The Human Illnesses: Neuropsychiatric Disorders and the Nature of the Human Brain. Oxford University Press, Oxford, 2011.Google Scholar
Previc, FH. Dopamine and the origin of human intelligence. Brain Cogn 1999; 41: 299350.Google Scholar
Coppens, Y. East Side Story: the origin of humankind. Scientific American, May 1994: 8895.Google Scholar
Bortz, WM II. Physical exercise as an evolutionary force. J Hum Evol 1985; 14: 145155.Google Scholar
Carrier, DR. The energetic paradox of human running and hominid evolution. Curr Anthropol 1984; 25: 483495.CrossRefGoogle Scholar
Leonard, WR, Robertson, MS. Comparative primate energetics and hominid evolution. Am J Phys Anthropol 1997; 102: 265281.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Raghanti, MA, Stimpson, CD, Erwien, JM, Hof, PR, Sherwood, CC. Cortical dopaminergic innervation of the frontal cortex: differences among humans, chimpanzees and macaque monkeys. Neuroscience 2008; 155: 203220.CrossRefGoogle ScholarPubMed
Berger, B, Gaspar, P, Verney, C. Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci 1991; 14: 2127.CrossRefGoogle ScholarPubMed
Lewis, DA, Melchitzky, DS, Sesack, SR, et al. Dopamine transporter immunoreactivity in monkey cerebral cortex: regional, laminar and ultrastructural organization. J Comp Neurol 2001; 432: 119136.CrossRefGoogle Scholar
Soubrie, P. Reconciling the role of central serotonin neurons in human and animal behavior. Behav Brain Sci 1986; 9: 319364.CrossRefGoogle Scholar
Jakab, RL, Goldman Rakic, PS. Segregation of serotonin 5HT 2A and 5HT 3 receptors in inhibitory circuits in the primate cerebral cortex. J Comp Neurol 2000; 417: 337348.Google Scholar
Sarter, M, Parikh, V. Choline transporters, cholinergic transmission and cognition. Nat Rev Neurosci 2005; 6: 4856.CrossRefGoogle ScholarPubMed
Levin, ED, Simon, BB. Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology 1998; 138: 217230.CrossRefGoogle ScholarPubMed
Ryan, TJ, Grant, SGN. The origin and evolution of synapses. Nat Rev Neurosci 2009; 10: 701712.CrossRefGoogle ScholarPubMed
Nithianantharajah, J, Komiyama, NH, McKechanie, A, et al. Synaptic scaffold evolution generated components of vertebrate cognitive complexity. Nat Neurosci 2013; 16(1): 1624.CrossRefGoogle ScholarPubMed
Elston, GN, Benavides-Piccione, R, Elston, A, et al. Specializations of the granular prefrontal cortex of primates: implications for cognitive processing. Anat Record A Discov Mol Cell Evol Biol 2006; 288A: 2635.Google Scholar
Testa-Silva, G, Verhoog, MG, Linaro, D, et al. High bandwidth synaptic communication and frequency tracking in human neocortex. PLoS Biology 2014; 12(11): e1002007.CrossRefGoogle ScholarPubMed
Watson, J. DNA: The Story of the Genetic Revolution. Knopf, New York, 2017.Google Scholar
Cann, RL, Brown, WM, Wilson, AC. Evolution of human mitochondrial DNA: a preliminary report. Prog Clin Biol Res 1982; 103: 157165.Google ScholarPubMed
Underhill, PA, Shen, P, Lin, AA, et al. Y chromosome sequence variation and the history of human populations. Nat Genet 2000; 26: 358361.CrossRefGoogle ScholarPubMed
Crawford, NG, Kelly, DE, Hansen, EG, et al. Loci associated with skin pigmentation identified in African populations. Science 2017. doi: 10.1126/science.aan8433.Google Scholar
Jinek, M, Chylinski, K, Fonfara, I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337: 816821.Google Scholar
Carey, N. The Epigenetics Revolution. Columbia University Press, New York, 2012.Google Scholar
Cassirer, E. Essay on Man. Yale University Press, New Haven, CT, 1944.Google Scholar
Jablonka, E, Lamb, MJ. Evolution in Four Dimensions. MIT Press, Cambridge MA, 2014.Google Scholar
Dicke, U, Roth, G. Neuronal factors determining high intelligence. Philos Trans R Soc Lond B Biol Sci 2016; 371(1685): 20150180.CrossRefGoogle ScholarPubMed
Fox, D. The limits of intelligence. Scientific American July 2011: 3643.CrossRefGoogle ScholarPubMed
Van den Heuvel, MP, Stam, CJ, Kahn, RS, Hulshoff Pol, HE. Efficiency of functional brain networks and intellectual performance. J Neurosci 2009; 29: 76197624.Google Scholar
Kringelbach, MI, Vuust, P, Geake, J. The pleasure of reading. Interdiscip Sci Rev 2008; 33: 321333.CrossRefGoogle Scholar
Berlyne, DE. Uncertainty and epistemic curiosity. Br J Psychol 1962; 53: 2734.Google Scholar
Leslie, I. Curious: The Desire to Know and Why your Future Depends on It. Basic Books, New York, 2014.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×