Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T12:14:03.229Z Has data issue: false hasContentIssue false

Chapter 16 - The Treatment of Obesity in Polycystic Ovary Syndrome

Published online by Cambridge University Press:  13 May 2022

Gabor T. Kovacs
Affiliation:
Monash University, Melbourne, Australia
Bart Fauser
Affiliation:
University Medical Center, Utrecht, Netherlands
Richard S. Legro
Affiliation:
Penn State Medical Center, Hershey, PA, USA
Get access

Summary

Obesity is commonly associated with polycystic ovarian syndrome (PCOS), featuring both elements of insulin resistance and metabolic syndrome. Understanding the causes of obesity, its impact on health and its comorbidities, as well as its regulation, are important factors in relation to the treatment of obesity and more particularly the effect of weight loss in PCOS. The various modalities of treatment include the conservative approach, utilizing lifestyle and dietary techniques, pharmacotherapy and the more invasive surgical approach, which has been shown to have better weight-loss results and less recidivism.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ehrmann, D. A. Polycystic ovary syndrome. N Engl J Med 2005; 352(12): 12231236.CrossRefGoogle ScholarPubMed
Flegal, K., Carroll, M., Kuczmarski, R. and Johnson, C. Overweight and obesity in the United States: Prevalence and trends, 1960–1994. Int J Obes Relat Metab Disord 1998; 22: 3947.Google Scholar
Kim, S. and Popkin, B. M. Commentary: Understanding the epidemiology of overweight and obesity – a real global public health concern. Int J Epidemiol 2005; 35(1): 6067.CrossRefGoogle ScholarPubMed
Popkin, B. M. The nutrition transition and its health implications in lower-income countries. Public Health Nutr 1998; 1(1): 521.Google Scholar
Wiklund, P., Toss, F., Weinehall, L. et al. Abdominal and gynoid fat mass are associated with cardiovascular risk factors in men and women. J Clin Endocrinol Metab 2008; 93: 43604366.Google Scholar
Wexler, M. ALK gene could be key for obesity treatment, study suggests. Genetic Obesity News. May 28, 2020.Google Scholar
Harris, M. I., Flegal, K. M., Cowie, C. C. et al. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults: The Third National Health and Nutrition Examination Survey, 1988–1994. Diabetes Care 1998; 21(4): 518524.CrossRefGoogle ScholarPubMed
Stroh, C., Hohmann, U., Lehnert, H. and Manger, T. PCO syndrome: Is it an indication for bariatric surgery? [Article in German]. Zentralbl Chir 2008; 133(6): 608610.CrossRefGoogle ScholarPubMed
McCullough, A. J. Epidemiology of the metabolic syndrome in the USA. J Dig Dis 2011; 12(5): 333340.Google Scholar
Wren, A. M., Seal, L. J., Cohen, M. A. et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 2001; 86(12): 5992.Google Scholar
Ballinger, A., McLoughlin, L., Medbak, S. and Clark, M. Cholecystokinin is a satiety hormone in humans at physiological post-prandial plasma concentrations. Clin Sci (Lond) 1995; 89(4): 375381.Google Scholar
Kissileff, H. R., Carretta, J. C., Geliebter, A. and Pi-Sunyer, F. X. Cholecystokinin and stomach distension combine to reduce food intake in humans. Am J Physiol Regul Integr Comp Physiol 2003; 285(5): R992R998.Google Scholar
Batterham, R. L., Cowley, M. A., Small, C. J. et al. Gut hormone PYY3-36 physiologically inhibits food intake. Nature 2002; 418(6898): 650654.CrossRefGoogle Scholar
Dakin, C. L., Gunn, I., Small, C. J. et al. Oxyntomodulin inhibits food intake in the rat. Endocrinology 2001;142(10):4244–50.Google Scholar
Kreymann, B., Ghatei, M. A., Williams, G. and Bloom, S. R. Glucagon-like peptide-1 7–36: A physiological incretin in man. Lancet 1987; 330(8571): 13001304.Google Scholar
Waterson Michael, J. and Horvath Tamas, L. Neuronal regulation of energy homeostasis: Beyond the hypothalamus and feeding. Cell Metab 2015; 22(6): 962970.Google Scholar
Hotta, K., Funahashi, T., Bodkin, N. L. et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 2001; 50(5): 11261133.CrossRefGoogle ScholarPubMed
Ueno, N., Inui, A., Iwamoto, M. et al. Decreased food intake and body weight in pancreatic polypeptide-overexpressing mice. Gastroenterology 1999;117(6):1427–32.CrossRefGoogle ScholarPubMed
Malaisse-Lagae, F., Carpentier, J. L., Patel, Y. C., Malaisse, W. J. and Orci, L. Pancreatic polypeptide: A possible role in the regulation of food intake in the mouse. Hypothesis. Experientia 1977; 33(7): 915917.Google Scholar
McLaughlin, C. L. and Baile, C. A. Obese mice and the satiety effects of cholecystokinin, bombesin and pancreatic polypeptide. Physiol Behav 1981; 26(3): 433437.Google Scholar
Sun, Y. S., Brunicardi, F. C., Druck, P. et al. Reversal of abnormal glucose metabolism in chronic pancreatitis by administration of pancreatic polypeptide. Am J Surg 1986; 151(1): 130140.Google Scholar
Batterham, R., Le Roux, C., Cohen, M. A. et al. Pancreatic polypeptide reduces appetite and food intake in humans. J Clin Endocrinol Metab 2003; 88: 39893992.Google Scholar
Escobar-Morreale, H. F. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol 2018; 14(5): 270284.CrossRefGoogle ScholarPubMed
Hart, R., Hickey, M. and Franks, S. Definitions, prevalence and symptoms of polycystic ovaries and polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol 2004; 18(5): 671683.Google Scholar
Asunción, M., Calvo, R. M., San Millán, J. L., Sancho, J., Avila, S. and Escobar-Morreale, H. F. A prospective study of the prevalence of the polycystic ovary syndrome in unselected Caucasian women from Spain. J Clin Endocrinol Metab 2000; 85(7): 24342438.Google Scholar
Alvarez-Blasco, F., Botella-Carretero, J. I., San Millán, J. L. and Escobar-Morreale, H. F. Prevalence and characteristics of the polycystic ovary syndrome in overweight and obese women. Arch Intern Med 2006; 166(19): 20812086.CrossRefGoogle ScholarPubMed
Gabriella Garruti, R. D., Vita, M. G., Lorusso, F., Giampetruzzi, F., Damato, A. B. and Giorgino, F. Adipose tissue, metabolic syndrome and polycystic ovary syndrome: From pathophysiology to treatment. Reprod Biomed Online 2009; 19(4): 552563.Google Scholar
Cussons, A. J., Stuckey, B. G. A. and Watts, G. F. Metabolic syndrome and cardiometabolic risk in PCOS. Curr Diab Rep 2007; 7(1): 66.CrossRefGoogle ScholarPubMed
Traub, M. Assessing and treating insulin resistance in women with polycystic ovarian syndrome. World J Diabetes 2011; 2: 3340.Google Scholar
Moran, L. J., Misso, M. L., Wild, R. A. and Norman, R. J. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: A systematic review and meta-analysis. Hum Reprod Update 2010; 16(4): 347363.Google Scholar
McGowan, M. P. Polycystic ovary syndrome: A common endocrine disorder and risk factor for vascular disease. Curr Treat Options Cardiovasc Med 2011; 13(4): 289301.Google Scholar
Coviello, A. D., Legro, R. S. and Dunaif, A. Adolescent girls with polycystic ovary syndrome have an increased risk of the metabolic syndrome associated with increasing androgen levels independent of obesity and insulin resistance. J Clin Endocrinol Metab 2006; 91(2): 492497.Google Scholar
Pfeifer, S. M. and Kives, S. Polycystic ovary syndrome in the adolescent. Obstet Gynecol Clin North Am 2009; 36(1): 129152.Google Scholar
Azziz, R. PCOS in 2015: New insights into the genetics of polycystic ovary syndrome. Nat Rev Endocrinol 2016; 12(2): 7475.Google Scholar
Escobar-Morreale, H. F. and San Millán, J. L. Abdominal adiposity and the polycystic ovary syndrome. Trends Endocrinol Metab 2007; 18(7): 266272.Google Scholar
Gambineri, A., Pelusi, C., Vicennati, V., Pagotto, U. and Pasquali, R. Obesity and the polycystic ovary syndrome. Int J Obes Relat Metab Disord 2002; 26: 883896.CrossRefGoogle ScholarPubMed
National Task Force on the Prevention and Treatment of Obesity. Overweight, obesity, and health risk. Arch Intern Med 2000; 160(7): 898904.CrossRefGoogle Scholar
Dunaif, A., Segal, K. R., Futterweit, W. and Dobrjansky, A. Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes 1989; 38(9): 1165.Google Scholar
Dunaif, A., Segal, K. R., Shelley, D. R., Green, G., Dobrjansky, A. and Licholai, T. Evidence for distinctive and intrinsic defects in insulin action in polycystic ovary syndrome. Diabetes 1992; 41(10): 1257.Google Scholar
Pantasri, T., Norman, R., Pantasri, T. and Norman, R. J. The effects of being overweight and obese on female reproduction: A review. Gynecol Endocrinol 2013; 30: 9094.Google Scholar
Kiddy, D. S., Hamilton-Fairley, D., Bush, A. et al. Improvement in endocrine and ovarian function during dietary treatment of obese women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 1992; 36(1): 105111.CrossRefGoogle ScholarPubMed
Hollmann, M., Runnebaum, B. and Gerhard, I. Infertility: Effects of weight loss on the hormonal profile in obese, infertile women. Hum Reprod 1996; 11(9): 18841891.CrossRefGoogle ScholarPubMed
Rasmussen, C. B. and Lindenberg, S. The effect of liraglutide on weight loss in women with polycystic ovary syndrome: An observational study. Front Endocrinol 2014; 5(140).CrossRefGoogle ScholarPubMed
Suliman, M., Buckley, A., Al Tikriti, A. et al. Routine clinical use of liraglutide 3 mg for the treatment of obesity: Outcomes in non-surgical and bariatric surgery patients. Diabetes Obes Metab 2019; 21(6): 14981501.CrossRefGoogle ScholarPubMed
Sherman, M. M., Ungureanu, S. and Rey, J. A. Naltrexone/bupropion ER (Contrave): Newly approved treatment option for chronic weight management in obese adults. Pharm Ther 2016; 41(3): 164172.Google Scholar
Billes, S. and Greenway, F. Combination therapy with naltrexone and bupropion for obesity. Expert Opin Pharmacother 2011; 12: 18131826.Google Scholar
Greenway, F. L., Whitehouse, M. J., Guttadauria, M. et al. Rational design of a combination medication for the treatment of obesity. Obesity (Silver Spring) 2009; 17(1): 3039.Google Scholar
Wadden, T. A., Foreyt, J. P., Foster, G. D. et al. Weight loss with naltrexone SR/bupropion SR combination therapy as an adjunct to behavior modification: The COR-BMOD trial. Obesity (Silver Spring) 2011; 19(1): 110120.Google Scholar
Colquitt, J. L., Picot, J., Loveman, E. and Clegg, A. J. Surgery for obesity. Cochrane Database Syst Rev 2009; 2: Cd003641.Google Scholar
Padwal, R., Klarenbach, S., Wiebe, N. et al. Bariatric surgery: A systematic review of the clinical and economic evidence. J Gen Intern Med 2011; 26(10): 11831194.CrossRefGoogle ScholarPubMed
Buchwald, H., Avidor, Y., Braunwald, E. et al. Bariatric surgery: A systematic review and meta-analysis. JAMA 2004; 292(14): 17241737.Google Scholar
Dixon, J. B. Obesity surgery and the polycystic ovary syndrome. In Kovacs, G., ed. Polycystic Ovary Syndrome. Cambridge: Cambridge University Press, 2007.Google Scholar
De Castro, M. L., Morales, M. J., Del Campo, V. et al. Efficacy, safety, and tolerance of two types of intragastric balloons placed in obese subjects: A double-blind comparative study. Obes Surg 2010; 20(12): 16421646.Google Scholar
Giardiello, C., Borrelli, A., Silvestri, E., Antognozzi, V., Iodice, G. and Lorenzo, M. Air-filled vs water-filled intragastric balloon: A prospective randomized study. Obes Surg 2012; 22(12): 19161919.Google Scholar
Tate, C. M. and Geliebter, A. Intragastric balloon treatment for obesity: Review of recent studies. Adv Ther 2017; 34(8): 18591875.Google Scholar
Jankiewicz-Wika, J., Kołomecki, K., Cywiński, J. et al. Impact of vertical banded gastroplasty on body weight, insulin resistance, adipocytokine, inflammation and metabolic syndrome markers in morbidly obese patients. Endokrynol Pol 2011; 62(2): 109119.Google Scholar
Mingrone, G. and Castagneto-Gissey, L. Mechanisms of early improvement/resolution of type 2 diabetes after bariatric surgery. Diabetes Metab 2009; 35(6 Pt 2): 518523.Google Scholar
Rubino, F., Gagner, M., Gentileschi, P. et al. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Ann Surg 2004; 240(2): 236242.Google Scholar
Rubino, F. Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis. Diabetes Care 2008; 31 (Suppl 2): S290S296.Google Scholar
Woelnerhanssen, B., Peterli, R., Steinert, R. E., Peters, T., Borbély, Y. and Beglinger, C. Effects of postbariatric surgery weight loss on adipokines and metabolic parameters: Comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy – a prospective randomized trial. Surg Obes Relat Dis 2011; 7(5): 561568.Google Scholar
Marantos, G., Daskalakis, M., Karkavitsas, N., Matalliotakis, I., Papadakis, J. A. and Melissas, J. Changes in metabolic profile and adipoinsular axis in morbidly obese premenopausal females treated with restrictive bariatric surgery. World J Surg 2011; 35(9): 20222030.CrossRefGoogle ScholarPubMed
Mustafa, A., Rizkallah, N. N. H., Samuel, N. and Balupuri, S. Laparoscopic Roux-en-Y gastric bypass versus one anastomosis (loop) gastric bypass for obesity: A prospective comparative study of weight loss and complications. Ann Med Surg 2020; 55: 143147.Google Scholar
Lee, W.-J., Ser, K.-H., Lee, Y.-C., Tsou, J.-J., Chen, S.-C. and Chen, J.-C. Laparoscopic Roux-en-Y vs. mini-gastric bypass for the treatment of morbid obesity: A 10-year experience. Obes Surg 2012; 22(12): 18271834.Google Scholar
Escobar-Morreale, H., Botella-Carretero, J., Alvarez-Blasco, F., Sancho, J. and Millán, J. The polycystic ovary syndrome associated with morbid obesity may resolve after weight loss induced by bariatric surgery. J Clin Endocrinol Metab 2005; 90: 63646369.Google Scholar
Eid, G. M., Cottam, D. R., Velcu, L. M. et al. Effective treatment of polycystic ovarian syndrome with Roux-en-Y gastric bypass. Surg Obes Relat Dis 2005; 1(2): 7780.Google Scholar
Ernst, B., Wilms, B., Thurnheer, M. and Schultes, B. Reduced circulating androgen levels after gastric bypass surgery in severely obese women. Obes Surg 2013; 23(5): 602607.CrossRefGoogle ScholarPubMed
Escobar-Morreale, H. F., Santacruz, E., Luque-Ramírez, M. and Botella Carretero, J. I. Prevalence of “obesity-associated gonadal dysfunction” in severely obese men and women and its resolution after bariatric surgery: A systematic review and meta-analysis. Hum Reprod Update 2017; 23(4): 390408.Google Scholar
Eid, G. M., McCloskey, C., Titchner, R. et al. Changes in hormones and biomarkers in polycystic ovarian syndrome treated with gastric bypass. Surg Obes Relat Dis 2014; 10(5): 787791.Google Scholar
Skubleny, D., Switzer, N. J., Gill, R. S. et al. The impact of bariatric surgery on polycystic ovary syndrome: A systematic review and meta-analysis. Obes Surg 2016; 26(1): 169176.Google Scholar
Malik, S. M. and Traub, M. L. Defining the role of bariatric surgery in polycystic ovarian syndrome patients. World J Diabetes 2012; 3(4): 7179.CrossRefGoogle ScholarPubMed
Lima, M. M. O., Pareja, J. C., Alegre, S. M. et al. Acute effect of Roux-en-Y gastric bypass on whole-body insulin sensitivity: A study with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab 2010; 95(8): 38713875.Google Scholar
Deitel, M., Stone, E., Kassam, H. A., Wilk, E. J. and Sutherland, D. J. Gynecologic-obstetric changes after loss of massive excess weight following bariatric surgery. J Am Coll Nutr 1988; 7(2): 147153.Google Scholar
Jamal, M., Gunay, Y., Capper, A., Eid, A., Heitshusen, D. and Samuel, I. Roux-en-Y gastric bypass ameliorates polycystic ovary syndrome and dramatically improves conception rates: A 9-year analysis. Surg Obes Relat Dis 2012; 8(4): 440444.Google Scholar
Gerrits, E. G., Ceulemans, R., van Hee, R., Hendrickx, L. and Totté, E. Contraceptive treatment after biliopancreatic diversion needs consensus. Obes Surg 2003; 13(3): 378382.CrossRefGoogle ScholarPubMed
Victor, A., Odlind, V. and Kral, J. G. Oral contraceptive absorption and sex hormone binding globulins in obese women: Effects of jejunoileal bypass. Gastroenterol Clin North Am 1987; 16(3): 483491.Google Scholar
Bastounis, E. A., Karayiannakis, A. J., Syrigos, K., Zbar, A., Makri, G. G. and Alexiou, D. Sex hormone changes in morbidly obese patients after vertical banded gastroplasty. Eur Surg Res 1998; 30(1): 4347.Google Scholar
Rochester, D., Jain, A., Polotsky, A. J. et al. Partial recovery of luteal function after bariatric surgery in obese women. Fertil Steril 2009; 92(4): 14101415.CrossRefGoogle ScholarPubMed
American College of Obstetricians and Gynecologists. ACOG Committee Opinion number 315, September 2005: Obesity in pregnancy. Obstet Gynecol 2005; 106(3): 671675.Google Scholar
Poitou Bernert, C., Ciangura, C., Coupaye, M. et al. Nutritional deficiency after gastric bypass: Diagnosis, prevention and treatment. Diabetes Metab 2007; 33(1): 1324.Google Scholar
Aricha-Tamir, B., Weintraub, A. Y., Levi, I. and Sheiner, E. Downsizing pregnancy complications: A study of paired pregnancy outcomes before and after bariatric surgery. Surg Obes Relat Dis 2012; 8(4): 434439.Google Scholar
Burke, A. E., Bennett, W. L., Jamshidi, R. M. et al. Reduced incidence of gestational diabetes with bariatric surgery. J Am Coll Surg 2010; 211(2): 169175.Google Scholar
Lesko, J. and Peaceman, A. Pregnancy outcomes in women after bariatric surgery compared with obese and morbidly obese controls. Obstet Gynecol 2012; 119(3): 547554.Google Scholar
Sheiner, E., Levy, A., Silverberg, D. et al. Pregnancy after bariatric surgery is not associated with adverse perinatal outcome. Am J Obstet Gynecol 2004; 190(5): 13351340.Google Scholar
Pratt, J. S., Lenders, C. M., Dionne, E. A. et al. Best practice updates for pediatric/adolescent weight loss surgery. Obesity (Silver Spring) 2009; 17(5): 901910.Google Scholar
Yoshino, M., Kayser, B. D., Yoshino, J. et al. Effects of diet versus gastric bypass on metabolic function in diabetes. N Engl J Med 2020; 383(8): 721732.Google Scholar
Rosen, C. J. and Ingelfinger, J. R. Bariatric surgery and restoration of insulin sensitivity: It’s weight loss. N Engl J Med 2020; 383(8): 777778.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×