Skip to main content Accessibility help
×
  • Cited by 13
  • Jeff Colvin, Lawrence Livermore National Laboratory, Livermore, Jon Larsen, Cascade Applied Sciences, Inc., Boulder
Publisher:
Cambridge University Press
Online publication date:
November 2013
Print publication year:
2013
Online ISBN:
9781139095150

Book description

Most matter in the Universe, from the deep interior of planets to the core of stars, is at high temperature or high pressure compared to the matter of our ordinary experience. This book offers a comprehensive introduction to the basic physical theory on matter at such extreme conditions and the mathematical modeling techniques involved in numerical simulations of its properties and behavior. Focusing on computational modeling, the book discusses topics such as the basic properties of dense plasmas; ionization physics; the physical mechanisms by which laser light is absorbed in matter; radiation transport in matter; the basics of hydrodynamics and shock-wave formation and propagation; and numerical simulation of radiation-hydrodynamics phenomenology. End-of-chapter exercises allow the reader to test their understanding of the material and introduce additional physics, making this an invaluable resource for researchers and graduate students in this broad and interdisciplinary area of physics.

Reviews

'The text is well-written and … convey[s] the content clearly, as does the mathematically rigorous treatment of physical phenomena. This book hence offers a comprehensive (and modern) introduction into the basic physics of matter at extreme conditions and into the mathematical techniques involved in numerical simulations of its properties and behaviour with a clear focus on computational modeling of the relevant phenomena.'

Manuel Vogel Source: Contemporary Physics

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Further reading
Amendt, P., Colvin, J. D., Ramshaw, J. D., Robey, H. F., and Landen, O. L. (2003). Modified Bell–Plesset effect with compressibility: Application to double-shell ignition target designs. Phys. Plasmas, 10, 820–829.
Bellman, R. and Pennington, R. H. (1954). Effects of surface tension and viscosity on Taylor instability. Q. Appl. Math, 12, 151.
Bowers, R. L. and Wilson, J. R. (1991). Numerical Modeling in Applied Physics and Astrophysics. Boston: Jones and Bartlett.
Braginskii, S. I. (1965). In Review of Plasma Physics. New York: Consultants Bureau, Vol. 1, pp. 205–311.
Brysk, H. (1974). Electron–ion equilibration in a partially degenerate plasma. Plasma Phys., 16, 927–932.
Campbell, P. M. (1984). Transport phenomena in a completely ionized gas with large temperature gradients. Phys. Rev. A, 30(1), 365–373.
Carslaw, H. S. and Jaeger, J. C. (1959). Conduction of Heat in Solids. Oxford: Clarendon Press.
Castor, J. I. (2004). Radiation Hydrodynamics. Cambridge: Cambridge University Press.
Chandrasekhar, S. (1935). The radiative equilibrium of a planetary nebula. Z. Astrophys., 9, 266.
Chandrasekhar, S. (1942). Principles of Stellar Dynamics. Chicago: University of Chicago Press.
Chandrasekhar, S. (1943a). Dynamical friction. I. General considerations: The coefficient of dynamical friction. Astrophys. J., 97, 255–262.
Chandrasekhar, S. (1943b). Dynamical friction. II. The rate of escape of stars from clusters and the evidence for the operation of dynamical friction. Astrophys. J., 97, 263–273.
Chen, F. F. (1974). Introduction to Plasma Physics. New York: Plenum Press.
Cloutman, L. D. (1989). Numerical evaluation of the Fermi–Dirac integrals. Astrophys. J. Suppl., 71, 677–699.
Cohen, R. S., Spitzer, L., and Routly, P. M. (1950). The electrical conductivity of an ionized gas. Phys. Rev., 80(2), 230–238.
Colvin, J. D. and Kalantar, D. H. (2006). Scaling of pressure with intensity in laser-driven shocks and effects of hot X-ray preheat. Shock Compression of Condensed Matter – 2005, AIP Conference Proceedings, CP845, 1413–1416.
Colvin, J. D., Legrand, M., Remington, B. A., Schurz, G., and Weber, S. V. (2003). A model for instability growth in accelerated solid metals. J. Appl. Phys., 93, 5287–5301.
Courant, R., Friedrichs, K., and Lewy, H. (1928). Über die partiellen differenzengleichungen der mathematischen physik. Math. Ann., 100, 32–74.
Cox, J. P. and Giuli, R. T. (1968). Principles of Stellar Structure. New York: Gordon and Breach.
Davies, J. R. (2009). Laser absorption by overdense plasmas in the relativistic regime. Plasma Phys. Control. Fusion, 51, 014006.
Dimonte, G. (2000). Spanwise homogeneous buoyancy-drag model for Rayleigh–Taylor mixing and experimental evaluation. Phys. Plasmas, 7, 2255–2269.
Drake, R. P. (2006). High-Energy-Density Physics. Heidelberg: Springer-Verlag.
Drucker, D. C. (1980). A further look at Rayleigh–Taylor and other surface instabilities in solids. Ingenieur-Archiv, 49, 361–367.
Drude, P. (1900). Zur electronentherorie der metalle. Ann. Phys., 306, 566–613.
Ensman, L. and Burrows, A. (1992). Shock breakout in SN 1987A. Astrophys. J., 393, 742–755.
Feynman, R. P., Metropolis, N., and Teller, E. (1949). Equations of state of elements based on the generalized Fermi–Thomas theory. Phys. Rev., 75, 1561–1573.
Ginsburg, V. L. (1970). The Propagation of Electromagnetic Waves in Plasmas. New York: Pergamon Press.
Griem, H. (1964). Plasma Spectroscopy. New York: McGraw-Hill.
Haan, S. W. (1989). Onset of non-linear saturation for Rayleigh–Taylor growth in the presence of a full spectrum of modes. Phys. Rev. A, 39, 5812.
Jackson, J. D. (1999). Classical Electrodynamics, 3rd edn. New York: John Wiley & Sons.
Johnson, G. R., Hoegfeldt, J. M., Lindholm, U. S., and Nagy, A. (1983a). Response of various metals to large torsional strains over a large range of strain rates – Part 1: Ductile metals. J. Eng. Mater. Technol., 105, 42–47.
Johnson, G. R., Hoegfeldt, J. M., Lindholm, U. S., and Nagy, A. (1983b). Response of various metals to large torsional strains over a large range of strain rates – Part 2: Less ductile metals. J. Eng. Mater. Technol., 105, 48–53.
Kittel, C. (1958). Elementary Statistical Physics. New York: John Wiley & Sons.
Krall, N. and Trivelpiece, A. (1973). Principles of Plasma Physics. New York: McGraw-Hill.
Kramers, H. A. (1923). On the theory of X-ray absorption and of the continuous X-ray spectrum. Phil. Mag., 46, 836–871.
Kulsrud, R. M. (2001). Magnetic reconnection: Sweet–Parker versus Petschek. Earth Planets Space, 53, 417–422.
Landau, L. D. and Lifshitz, E. M. (1958). Statistical Physics. Reading, MA: Addison-Wesley.
Landau, L. D. and Lifshitz, E. M. (1960). Electrodynamics of Continuous Media. Oxford: Pergamon Press.
Langdon, A. B. (1980). Non-linear inverse bremsstrahlung and heated electron distributions. Phys. Rev. Lett., 44, 575–579.
Larsen, J. T. and Lane, S. M. (1994). HYADES – A plasma hydrodynamics code for dense plasma studies. J. Quant. Spectrosc. Radiat. Transf., 51, 179–186.
Lebedev, A. I., Nizovtsev, P. N., and Rayevsky, V. A. (1993). Rayleigh–Taylor instability in solids. Proceedings of 4th International Workshop on the Physics of Compressible Turbulent Mixing, 29 March–1 April 1993. Cambridge: Cambridge University Press, pp. 81–93.
Lee, Y. T. and More, R. M. (1984). An electron conductivity model for dense plasmas. Phys. Fluids, 27(5), 1273–1286.
Leighton, R. B. (1959). Principles of Modern Physics. New York: McGraw-Hill.
Lokke, W. A. and Grasberger, W. H. (1977). XSNQ-U – A non-LTE emission and absorption coefficient subroutine. Lawrence Livermore Laboratory Report No. UCRL-52276.
Marshak, R. E. (1958). Effect of radiation on shock wave behavior. Phys. Fluids, 1, 24–29.
Mayer, H. (1948). Methods of opacity calculations. Los Alamos Scientific Laboratory Report No. LA-647.
Meshkov, E. E. (1969). Instability of a shock wave accelerated interface between two gases. Mekh. Zhidk. Gaz., 5, 151.
Mihalas, D. and Mihalas, B. W. (1984). Foundations of Radiation Hydrodynamics. New York: Oxford University Press.
Mikaelian, K. (1993). Effect of viscosity on Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Rev. E, 47, 375–383.
Mikaelian, K. (1996). Rayleigh–Taylor instability in finite thickness fluids with viscosity and surface tension. Phys. Rev. E, 54, 3676–3680.
Miles, J. W. (1966). Taylor instability of a flat plate. Technical Report No. GAMD-7335. San Diego: General Dynamics. [This report is no longer available, but the Miles formulation is derived again in Dienes, J. K. (1978). Method of generalized coordinates and an application to Rayleigh–Taylor instability. Phys. Fluids, 21, 736–744.]
Milne, E. A. (1921). Radiative equilibrium in the outer layers of a star: The temperature distribution and the law of darkening. Mon. Notices Roy. Astron. Soc., 81, 361–375.
Mitchell, A. R. (1969). Computational Methods in Partial Differential Equations. London: John Wiley & Sons.
More, R. M. (1982). Applied Atomic Collision Physics, Vol. 2. New York: Academic Press.
More, R. M., Warren, K. H., Young, D. A., and Zimmerman, G. B. (1988). A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids, 31, 3059–3078.
Noh, W. F. (1982). Infinite reflected shock test problems in spherical geometry. Internal Memo. Livermore, CA: Lawrence Livermore National Laboratory.
Parker, E. N. (1957). Acceleration of cosmic rays in solar flares. Phys. Rev., 107(3), 830–836.
Petschek, H. E. (1964). Magnetic field annihilation. In Physics of Solar Flares. NASA SP-50, p. 425.
Potter, D. (1978). The formation of high-density Z-pinches. Nucl. Fusion, 18(6), 813–824.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes; The Art of Scientific Computing. Cambridge: Cambridge University Press.
Reighard, A. B., Drake, R. P., Mucino, J. E., Knauer, J. P., and Busquet, M. (2007). Planar radiative shock experiments and their comparison to simulations. Phys. Plasmas, 14, 056504.
Richtmyer, R. D. (1960). Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math., 13, 297–319.
Richtmyer, R. D. and Morton, K. W. (1967). Difference Methods for Initial-Value Problems. New York: Wiley Interscience.
Rosen, M. D. (1994). Marshak waves: Constant flux vs. constant T – a (slight) paradigm shift. Lawrence Livermore National Laboratory Report No. UCRL-ID-119548.
Rosenbluth, M. N. (1954). Infinite conductivity theory of the pinch. Los Alamos Scientific Laboratory Technical Report No. LA-1850.
Ryutov, D. D., Drake, R. P., Kane, J., Liang, E., Remington, B. A., and Wood-Vasey, M. (1999). Similarity criteria for the laboratory simulation of supernova hydrodynamics. Astrophys. J., 518(2), 821.
Sedov, L. I. (1946a). Le movement d'air en cas d'une forte explosion. Compt. Rend. (Doklady) Acad. Sci. URSS, 52, 17–20.
Sedov, L. I. (1946b). Propagation of strong blast waves. Prikl. Mat. i Mekh., 10, 241–250.
Shafranov, V. D. (1966). Equilibrium in a magnetic field. In Reviews of Plasma Physics, Vol. 2. New York: Consultants Bureau, p. 103.
Shkarovsky, I. P., Johnston, T. W., and Bachynski, M. P. (1966). The Particle Kinetics of Plasmas. Reading, MA: Addison-Wesley.
Spitzer, L. (1962). Physics of Fully Ionized Gases. New York: Wiley Interscience.
Spitzer, L. and Härm, R. (1953). Transport phenomena in a completely ionized gas. Phys. Rev., 89(2), 977–981.
Steinberg, D. J., Cochran, S. G., and Guinan, M. W. (1980). A constitutive model for metals applicable at high strain rate. J. Appl. Phys., 51, 1498–1504.
Sweet, P. A. (1958). Electromagnetic Phenomenon in Cosmical Physics. Cambridge: Cambridge University Press.
Symon, K. R. (1960). Mechanics. Reading, MA: Addison-Wesley.
Taylor, G. I. (1950). The formation of a blast wave by a very intense explosion. Proc. Roy. Soc. A, 201, 159–175.
von Mises, R. (1913). Mechanik der festen Körper im plastisch deformablen Zustand. Nachr. Akad. Wiss. Goett II, Math-Phys., 1, 582–592.
von Neumann, J. and Richtmyer, R. D. (1950). A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys., 21, 232–237.
Zel'dovich, Ya. B. and Raizer, Yu. P. (1967). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, 1st edn. New York: Academic Press.
Albritton, J. R. and Langdon, A. B. (1980). Profile modification and hot-electron temperature from resonant absorption at modest intensity. Phys. Rev. Lett., 45, 1794–1798.
Bar-Shalom, A., Klapisch, M., and Oreg, J. (2001). HULLAC, an integrated computer package for atomic processes in plasmas. J. Quant. Spectr. Rad. Trans., 71, 169–188.
Bar-Shalom, A., Oreg, J., Goldstein, W. H., Shvarts, D., and Zigler, A. (1989). Super-transition arrays: A model for the spectral analysis of hot, dense plasma. Phys. Rev. A, 40, 3183–3193.
Besnard, D. C., Harlow, F. H., Rauenzahn, R. M., and Zemach, C. (1996). Spectral transport model for turbulence. Theor. Comp. Fluid Dynamics, 8, 1–35.
Betti, R., Goncharov, V. N., McCrory, R. L., and Verdon, C. P. (1995). Self-consistent cutoff wavenumber of the ablative Rayleigh–Taylor instability. Phys. Plasmas, 2, 3844–3851.
Boehly, T. R., Brown, D. R., Craxton, R. S., Keck, R. L., Knauer, J. P., Kelly, J. H., et al. (1997). Initial performance results of the OMEGA laser system. Opt. Commun., 133, 495–506.
Born, M. and Wolf, E. (1964). Principles of Optics, 2nd edn. New York: Pergamon Press.
Bourne, N. K., Gray, G. T., and Millett, J. C. F. (2009). On the shock response of cubic metals. J. Appl. Phys., 106, 091301.
Bowers, R. L. and Wilson, J. R. (1991). Numerical Modeling in Applied Physics and Astrophysics. Boston: Jones and Bartlett.
Braginskii, S. I. (1958). Transport processes in a plasma. Soviet Physics JETP, 6, 358.
Brysk, H., Campbell, P. M., and Hammerling, P. (1975). Thermal conduction in laser fusion. Plasma Phys., 17, 473–484.
Carroll, M. M. and Holt, A. C. (1972). Static and dynamic pore-collapse relations for ductile porous materials. J. Appl. Phys., 43, 1626–1636.
Chandrasekhar, S. (1961). Hydrodynamic and Hydromagnetic Stability. New York: Dover.
Chapman, S. and Cowling, T. G. (1939). The Mathematical Theory of Non-Uniform Gases. Cambridge: Cambridge University Press.
Colvin, J. D. (2007). Modeling dynamic ductility: An equation of state for porous metals. Shock Compression of Condensed Matter – 2007, AIP Conference Proceedings, CP955, pp. 31–34.
Colvin, J. D., Ault, E. R., King, W. E., and Zimmerman, I. H. (2003). Computational model for a low-temperature laser-plasma driver for shock-processing of metals and comparison to experimental data. Phys. Plasmas, 10, 2940–2947.
Davies, R. M. and Taylor, G. I. (1950). The mechanics of large bubbles rising through extended liquids and through liquids in tubes. Proc. Roy. Soc., A200, 375.
de Groot, S. R. (1961). Thermodynamics of Irreversible Processes. New York: Wiley Interscience.
De Silva, A. W. and Katsouros, J. D. (1998). Electrical conductivity of dense copper and aluminum plasmas. Phys. Rev. E, 57(5), 5945–5951.
Einstein, A. (1917). Quantentheorie der Strahlung. Phys. Z., 18, 121–128.
Garabedian, P. R. (1964). Partial Differential Equations. New York: John Wiley.
Haynam, C. A., Wegner, P. J., Auerbach, J. M., Bowers, M. W., Dixit, S. N., Erbert, G. V., et al. (2007). National Ignition Facility laser performance status. Appl. Opt., 46, 3276–3303.
Hill, M. J. M. (1894). On a spherical vortex. Phil. Trans. A, CLXXXV, 213.
Hubbard, W. (1966). Studies in stellar evolution. V. Transport coefficients of degenerate stellar matter. Astrophys. J., 146, 858–870.
Hubbard, W. B. and Lampe, M. (1969). Thermal conduction by electrons in stellar matter. Asrophys. J. Suppl., 18, 297–346.
Jackson, J. D. (1962). Classical Electrodynamics. New York: John Wiley & Sons.
Keldysh, L. V. (1965). Ionization in the field of a strong electromagnetic wave. Soviet Phys. JETP, 20, 1307–1314.
Kruer, W. L. (2001). The Physics of Laser-Plasma Interactions. Boulder, CO: Westview Press.
Landau, L. D. and Lifshitz, E. M. (1959). Fluid Mechanics. Reading, MA: Addison-Wesley.
Lee, K. T., Kim, S. H., Kim, D., and Lee, T. N. (1996). Numerical study on the dynamics of Z-pinch carbon plasma. Phys. Plasmas, 3(4), 1340–1347.
Liberman, M. A., De Groot, D. S., Toor, A., and Spielman, R. B. (1999). Physics of High-Density Z-pinch Plasmas. New York: Springer-Verlag.
Lindl, J. D. (1998). Inertial Confinement Fusion. New York: Springer-Verlag.
Rayleigh, Lord (1965). Scientific Papers. New York: Dover.
Matzen, M. K. (1997). Z pinches as intense X-ray sources for high-energy-density physics applications. Phys. Plasmas, 4, 1519–1527.
Montross, C. S., Wei, T., Ye, L., Clark, G., and Mai, Y.-W. (2002). Laser shock processing and its effects on microstructure and properties of metal alloys: A review. Int. J. Fatigue, 24, 1021–1036.
Munro, D. H. (1988). Analytic solutions for Rayleigh–Taylor growth rates in smooth density gradients. Phys. Rev. A, 38, 1433.
Ragusa, J. C., Guermond, J. L., and Kanschat, G. (2012). A robust SN-DG-approximation for radiation transport in optically thick and diffusive regimes. J. Comp. Phys., 231, 1947–1962.
Roach, P. J. (1972). Computational Fluid Dynamics. Albuquerque, NM: Hermosa.
Rosenbluth, M. N., MacDonald, W. M., and Judd, D. L. (1957). Fokker–Planck equation for an inverse-square force. Phys. Rev., 107, 1–6.
Ryutov, D. D., Derzon, M. S., and Matzen, M. K. (2000). The physics of fast Z pinches. Rev. Mod. Phys., 72(1), 167–223.
Scott, H. A. and Hansen, S. B. (2010). Advances in NLTE modeling for integrated simulations. High Energy Density Phys., 6, 39–47.
Spitzer, L. (1940). The stability of isolated clusters. Mon. Notices Roy. Astron. Soc., 100, 396–413.
Stewart, J. C. and Pyatt, Jr., K. D. (1966). Lowering of ionization potentials in plasmas. Astrophys. J., 144, 1203–1211.
Takabe, H., Mima, K., Montierth, L., and Morse, R. L. (1985). Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma. Phys. Fluids, 28, 3676–3681.
Taylor, G. I. (1950). The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. Roy. Soc., A201, 192–196.
US Department of Energy Office of Science and National Nuclear Security Administration. (2009). Basic Research Needs for High Energy Density Laboratory Physics. Washington, DC: US Department of Energy.
Zel'dovich, Ya. B. and Raizer, Yu. P. (1967). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, 2nd edn. Mineola, NY: Dover Press.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.